Lecture 7: Congestion Control

-A"" - - -“~‘_
’.'._’s)' .‘__‘,_', .' .’.’ \ .
'/ L__: AT I ol ol ™Y |—_\\

’ RNVRY WRww e AP LN LW QW

™
.

CSMA async sonet

~
-
LA
LA

copper fiber radio.

Chapter 3

3.6 Principles of
congestion control

3.7 TCP congestion
control

CS118 - Winter 2025

How network congestion happens

Host A
7*out

tOO many sources =i Ain . original data Q

sending data too fast N
IntO the network at HoitB E unlimited shared I::
— S

the same time - ~

Scenario 1

¢ 2 senders, 2 receivers
+ one router with infinite buffer

¢ NO retransmission

| |
k
[
~
©
[
~
J 5-
= ~
5
@
wn

Cles > :
When congested: 5 §
+ Achieve maximum possible <
throughput i ;
+ long delays, unbounded N C/2 N C/2
N N

CS118 - Winter 2025

Congestion: scenario 2

Host A

one router. finite Ay original data
, Ay = original +
bUﬂ:el" Host B retrans.

senders retransmit

when timeout \/ﬁ)
N

+ Packets may get dropped at

router due to buffer full

¢+ Known loss case: sender only

retransmits if a packet is kn
to be lost

* Duplicates: sender may time out

prematurely and retransmit,

some duplicates are delivered

router with
finite buffers

R/2 f----m-mm--

Kout

own

7\‘out

1

R/2

CS118 - Winter 2025

Congestion Collapse

Host A
>"~ER2R1R1432321 1 >
Host B
Ri: retransmitted packets earlier packets
queued up

ke g

S .

E e ideal effective load (fully utilize resource)

= .

] | Capacity __ __ /_/___l ________

IS

Ly

actual curve (the heavier the
congestion, the more
retransmissions)

Offered load

CS118 - Winter 2025

TCP Congestion Control

+ Add a congestion control window (cwnd) on top of
the flow-control window

= Sender limits: LastByteSent-LastByteAcked < cwnd

send_ base nexfseqnum I dlready I usable, not

ack’ed yet sent

I”“] H 32?2257% [I not usable

—__——_—— e

HE TN

_____________ A
recvwin

| S—

* How to adjust cwnd size based on network traffic
load?

» Infer network congestion by observed packet losses

CS118 - Winter 2025

Congestion Control (CC) Window Adjustment

* Two phases:

» slow start: set CC window (cwnd) size to 1 segment
o Start slow but rapidly increase CC window size

= congestion avoidance
o Slowly but continuously increase CC window size

+ Use Slow-Start Threshold (ssthresh) to define
the boundary between these two phases

« When cwnd < ssthresh: in slow-start phase,
increase cwnd quickly

= When cwnd 2 ssthresh: in congestion avoidance
phase, increase cwnd by one segment per RTT

CS118 - Winter 2025 6

TCP Slow Start
Objective: gauge the pipeline size quickly

1. Set cwnd = 1 MSS (max. segment size, in bytes)
» I.e. cwnd = 1 segment worth of bytes

(Assuming no delayed-ACK)

2. Send cwnd-allowed segments

. hich
3. If receive anfack «Z”uéﬁué”ﬁ%e/férg b e
forward

|__
= cwnd = cwnd + 1 segment ‘1‘<
two se ents
e more segment can be sent now w’
4. If timeout kwnd have gone too far
= ssthresh =cwnd /2
s cwnd = 1 MSS | reset cwnd to 1 segment

= goto step 2 Multiplicative Increase per RTT

CS118 - Winter 2025 7

Slow Start with Congestion Avoidance

+ Set cwnd = 1 packet, and initialize ssthresh
s default: initialize ssthresh to the flow control window size

¢+ \When cwnd < ssthresh: in Slow Start phase

¢ when cwnd 2 ssthresh: in Congestion Avoidance phase
= increase cwnd by one packet per round-trip time 1

Loss detection

.-"--"--T ————————————————————————————————— Network limit

.......................... ssthresh

2
7\210 need to go back to
Time low-Start upon packet

loss (unless timeout);
reduce cwnd to half

SS SS CA SS instead

CS118 - Winter 2025

Congestion window

Congestion Avoidance:
Additive Increase, Multiplicative Decrease (AIMD)

. . \f .
Without moving cwnd back to single segment

Objective: cautiously probe for
unused resources, quickly
recover from overshoot

+ Send cwnd-allowed segments

« If all sent segments in the last
RTT time period get ACKed

e cwnd = cwnd + 1 segment
» Else if 3 dup-ACKs

e cwnd =cwnd /2

Loss detection

[T

Network limit

Congestion window

o \ / Time

CS118 - Winter 2025 o]

From the TCP lecture:

TCP Fast Retransmit

+ RTO set to a relatively long value
» Detect loss by timeout - long delay before retransmit

* Detect packet loss by duplicate ACKs

« When a segment is lost, next arrival at receiver is out of
order

= Receiver sends an ack with the seqg# of the last in-order
arrival (cumulative ACK)

* When sender receives 3 duplicate ACKs carrying #n:
assumes the segment of seg#(n) is lost

» Why 3 dup-ACKs: avoid false alarm due to out-of-order
packet delivery

—>fast retransmit: resend the segment without waiting for
timeout

e Resending one segment only; also restart the retransmission timer
CS118 - Winter 2025 10

Congestion Avoidance

Objective: in steady state, the sender gently
probe for unused resources

+ Send cwnd packets

* If receives an ack
= cwnd(i) = cwnd(i-1) + (#bytes in 1 segment)/cwnd(i-1)

¢ |[f detect loss by 3 duplicate ACKs: packets
continue to arrived at receiver - network not
badly jammed

= cwnd = ssthresh=cwnd/2 2

Additive Increase, Multiplicative Decrease (AIMD)

1

CS118 - Winter 2025

11

TCP fast retransmit example

ACKS592 ACKS592

ACKS592

ACKS592
CK592

ACKS592
ACKS592

ACKS592

timeout
timeout

Whenever retransmit
data, restart the timer

v Without Fast RXT l Fast RXT scenario Y

CS118 - Winter 2025

12

Early Congestion Notification (ECN) *~
¢+ ECN-capable hosts set ECT (0 or 1) bits in IP

header (ECT: ECN Capable Transport)

* When a router is getting overloaded: set the 2
ECN bits to 11

¢ TCP receiver: set an “ECN-Echo” (ECE) flag in the
ACK packet going to the sender

¢ TCP sender: cut cwnd to half
= congestion avoidance)

e===== to—m e * In IP header

| ECN FIELD |

tom - pom=m= + sender can use either 01 or 10;
0 1 ECT (1)

1 0 rcr (0) routers sets to 11 to indicate congestion.
1 1 CE These 2 bits are copied on return ACK pkt

CS118 - Winter 2025 13

L,
”bcpo,,t ql/(,t

TCP Throughput

+ What’s TCP throughout as a function of
window size and RTT?

* [gnore slow start: let W = window-size when

loss occurs
« When window is W: throughput = W/ RTT

» Just after loss
window 2> W/2, throughput 2> W/2RTT

= (rough estimate) Average throughout: 0.75 W/RTT

CS118 - Winter 2025 14

Summary

+ Congestion control is a necessary tool to avoid
congestion collapse

» congestion collapse: increasing load —>further
decreasing goodput

¢+ Classic TCP congestion control approaches: end
host adaptation

= Don’t rely on network help, try to estimate network
state using losses

e More advanced schemes also estimate by delays, delay
changes

¢ Classic TCP congestion controls have two main
stages

» Slow Start to quickly ramp up sending
= Congestion Avoidance to maintain sending

CS118 - Winter 2025

Summary: TCP Congestion Control Actions

1. a TCP connection starts with slow start

= cwnd = 1 segment
» Ssthresh assigned an initial value

2. when cwnd < ssthresh: slow-start
= When in slow-start: increase cwnd by 1 segment for
every ACK received that advances the cumulative
acknowledgment value

3. when cwnd = ssthresh: congestion avoidance
= When in congestlon avoidance: increase cwnd by 1
segment per RTT (or after successful delivery of a
windowful of segments)

4. After loss detected: ssthresh = cwnd/2

» If detected by 3 dup-ACKs: cwnd = cwnd/2
» If detected by retransmission timeout: cwnd = 1

segment

CS118 - Winter 2025

16

Schedule Rebase

Project 2 related, FYI
|

1/6 1/27 2/3 |
Mon | “\niog & TCr Security 101
delay & socket
1/8 1/15 1/22 1/29 2/5
Wed HITP PGS Trano, tt Conde. On Midterm
C. *
“Modern”
Transport, FYI 6 7 8 9 10
N 2/10 224 |3/3 3/10
Mon |\ Routing Routing in the| Hubs and
° QuicC algorithms & 9 ubs an
protocols Internet switches
2/12 2/19 | 2l2$outin 3/5 3/12
Wed Internet Addressing, algorithm% 3 Link layer Course
Protocol (IP) NAT, IPv6 protocols (Ethernet) review

* The big yellow numbers indicate the chapter numbers in the textbook.

CS118 - Winter 2025 17

£y,
Is TCP congestion control fair? /

Fairness: if N TCP sessions share same bottleneck link, each
should get 1/N of link capacity

Example: 2 competing connections, same RTT
+ Additive increase gives slope of 1
+ multiplicative decrease decreases throughput proportionally

capacity R

equal bandwidth share

TCP connection 1

loss: decrease window by factor of 2
ongestion avoidance: additive increase

congestion avoidance: additive increase
loss: decrease window by factor of 2

bottleneck
router

TCP conn 2

Connection 2 throughput

Connection 1 throughput R
CS118 - Winter 2025 18

Midterm next Wednesday
¢ In-person midterm

CS118 - Winter 2025

19

Summary: TCP sender congestion control

State Event TCP Sender Action Commentary
Slow Start Received CongWin = CongWin + MSS | Resulting in a doubling of
(SS) ACK for If (CongWin > Threshold) CongWin every RTT
previously set state to “Congestion
unacked data | Avoidance”
Congestion Received CongWin = CongWin+MSS * | Additive increase, resulting
Avoidance ACK for (MSS/CongWin) in increase of CongWin by
(CA) previously 1 MSS every RTT
unacked data
SS or CA Loss event Threshold = CongWin/2, Fast recovery,
detected by 3 | CongWin = Threshold, implementing multiplicative
duplicate Set state to “Congestion decrease. CongWin will
ACK Avoidance” not drop below 1 MSS.
SS or CA Timeout Threshold = CongWin/2, Enter slow start
CongWin = 1 MSS,
Set state to “Slow Start”
SS or CA Duplicate Increment duplicate ACK CongWin and Threshold
ACK count for segment being not changed
acked

CS118 - Winter 2025

20

CS118 - Winter 2025

21

A Bit of The History of TCP

+ 1974: 3-way handshake
+ 1978: TCP and IP split into TCP/IP
+ 1983 January 1: ARPAnet switches to TCP/IP

+ 1986: Internet started seeing congestion
collapses

+ 1987-1988: Van Jacobson fixes TCP,

publishes a seminal paper (TCP-Tahoe)
“Congestion Avoidance and Control”

http://ccr.sigcomm.org/archive/1995/jan95/ccr-9501-jacobson.pdf

+ 1990: added fast retransmit and fast recovery
(TCP-Reno)

CS118 - Winter 2025

http://ccr.sigcomm.org/archive/1995/jan95/ccr-9501-jacobson.pdf

Another lllustration of Fast Recovery/Retransmit),
(Reno)

| |

ACKed | Slentldatla, Buffered
data [vlvaitling Ifor IAC!(data
| cwnd | Just before the loss
State 1 detection
; cwnd/2 : Just after the loss
State 2 detection
'cwnd/2+#dup | “Inflating” cwnd by the
State 3 number of dup ACKs
| cwnd/2+#dup; Additional dup ACKs lead to
State 4 R A additional cwnd “inflation”
| . cwnd/2 After the successful
State 5 ‘

recovery (cwnd “deflation™)

oooooo Amount of successful delivered
””” data inferred from dup ACKs

Amount of packets in transit

Outstanding data which is not allowed to be retransmitted

Amount of new data allowed to be sent by “deflated” congestion window

;

The congestion window size is a
sum of these two elements

CS118 - Winter 2025

23

Congestion scenario 3

Host A .. Iy
A;, - original data out

app o
trans—> A, : original data, plus

retransmitted data

finite shared output
link buffers

A

+ Unneeded (superfluous) retransmissions
» Mmultiple copies of same packets go through overloaded
links, reduce effective throughput

+* When a packet is dropped, any “upstream transmission
capacity” used for that packet was wasted

CS118 - Winter 2025 24

Congestion Control (CC)

(from textbook) Two basic approaches to CC:

End-to-end congestion control: no explicit
feedback from network

* Hosts infer congestion from observed loss or delay

Network-assisted congestion control: routers
provide feedback to end hosts

+ A single bit congestion indication

FYI: there is a 39 and better approach: let the network
regulates traffic to avoid congestion

¢ But an IP network cannot do it

CS118 - Winter 2025 25

TCP Fast Recovery «

+ cwnd: aims to limit the number of packets inside
network

* Whenever a duplicate ACK arrives - a packet is out of
network = increase cwnd by 1 segment (cwnd inflation)

* When the lost segment is ACKed: deflate cwnd to the
right size

Loss detection

N

Network limit

ssthresh

Congestion window

Time

CS118 - Winter 2025 ' ' 26

cwnd = limit on # of packets inside network %

A Packet 1 was sent and ACKed earlier B
window is 8

P2
P3
P4
P5
P6
P7
P8
P9

3 dup-ACKs:
cwnd=cwnd/2

Resend P2 o
",'
y ;"

‘_

_/

CS118 - Winter 2025

i

The current situation:

un ACK’ed_ _ cwnd = 4 Not sent out yet
B S
il [A
! | !
112|134 |5|6|7|8,9/|1011]12 !
I | i
i cwnd=7 :
S e j_ ___cwnd=11;

cwnd = 4, should allow 4 packets in the network

But we cannot slide the window to the right to allow more transmission

Why?

How to fix it3 dup-ACKs inform us that 3 packets have been out of network
Inflate cwnd by 3 pkts> cwnd = 4+3 = 7 (still nothing new can go yet)

Receive next dup-ACK (triggered by P6): cwnd =8: still can’t send new packet
Receive next 3 dup-ACKs (triggered by P7-9): cwnd=11, sends P10-12

CS118 - Winter 2025 28

cwnd = limit on # of packets inside network™

A Packet 1 was sent and ACKed earlier B
window is 8

3 dup-ACKs:
cwnd=cwnd/2

Resend P2 /

triggered by P6-9

CS118 - Winter 2025

©yy

Fast Retransmit / Fast Recovery

Objective: cut
Awindow is 8 B window by half,
but avoiding
send 2,3,4,5,6,7,8,9 — draining the pipe
(cwnd=8) =————— ACK1 (keep ~half of
9’::1 window in flight)
3 dup ACK — /” -
(cwl:51=4(t:rget)+3(inﬂat)=7) :i—> ACK1
inflated amount, packets that left the network g, ACK 9

new ACK,
cwnd=4 (target)

When the loss
recovered, deflate
cwnd to the correct
value

When dup ACK comes,

-cwnd +=1 (8), cann
-cwnd +=1(9),cans
-cwnd +=1 (10), can
-cwnd +=1 (11), can

ACK 10, 11, 12

bt send anything yet

end a new packet (pkt 10)
send a new packet (pkt 11)
send a new packet (pkt 12)

CS118 - Winter 2025

30

Need better than loss-based congestion 4,
detection
* network traffic can be in one of 3 states
« Under-Utilized: traffic load < link capacity, no queue

» Over-Utilized: traffic load > link capacity, queues
form

» Saturated: queues full, packet loss occurs

¢ | oss-based control systems probe upward to
the Saturated point, then try to back off quickly
to assumed Under-Utilized state, to the let the
queues drain

+ Optimal traffic control: at the point of state
change from Under to Over-utilized, not to
reach the Saturated point

CS118 - Winter 2025 3

