Lecture-6: TCP

Chapter 3
3.5TCP

= Protocol format
= Connection

management
= Flow control

s Retransmission
timer

f‘-l.;.--‘ ,v‘ .y e |->—'.-'.' ““';
F ERISIINCL i eee N
‘/

~
N

CSMA async sonet...

copper fiber radio...

CS118 - Winter 2025

TCP function Overview

¢ point-to-point: creating a virtual pipe between 2

Processes

¢ connection-oriented: set up connection first before data
transmission, tear down the connection after finish

+ bi-directional, reliable byte steam delivery ¢igure ilustrates one

way only)

= NO “message” boundaries

+ flow controlled: prevent sender from overwhelming

receiver

¢ congestion controlled: mitigating traffic overload inside

the network

TCP control
parameters(state)
(TCP Control Block, TCB)

application application
Socket _ _ _ ___ writesdata____ / ___ readsdata_ j _ _
Interface TCP send buffer l TCP receive buff .

CS118 - Winter 2025

I -
2

TCP segment format

IP header

source port #

dest. port #

ACK flag: ACK#

sequence number

field valid —

acknowledgement number

Checksum is computed

over TCP segment plus
pseudo header

SYN, FIN, Reset:

connection
management flags
(Setup, Finish,
Reset)

TCP header has no info

W‘A [Ris|F| rcvr window size
_, checKsum
/

application

data

(variable length)

for congestion control

<
<«

32 bits

v

source [P address

destination IP address

Zero lprotocol TCP seg. length
TCP pseudo header

counting the
umber of
bytes

Seqg# of the first
byte in the payload

CS118 - Winter 2025

TCP’s seq. #s and ACK #s
Lets first assume that a TCP
connection between A and B is
already setup: @ Host A Host B @

Seq. #: the seq# of the Hosta

Seq=4
: . . sends 10- 2, ACK-
first byte Iin this bvie data 79, datg
y
host B ACKs

Segment,s data receipt of 10-byte

52, gatd data from A, and

ACK #: the seq# of next w sends 50-byte
byte expected from e

the other end host ACKs

receipt

Seqg-
of 50 from 9=52, Ac_

cumulative ACK

time

CS118 - Winter 2025 4

TCP Connection Management

* Set up connection before starting data
transmission
« Each of the 2 ends reliably informs the other its initial
data byte sequence number value

* Close connection after finishing data transmission
» Each of the 2 ends reliably informs the other its final
data byte sequence number value

¢ Abort connection
« When receiving a RST segment
« When a node may send a RST segment
e receives a TCP segment of unknown connection
e TCP retransmission count hits the upper-bound

e need to reject a new connection request or close an existing
TCP connection, due to resource limitation

CS118 - Winter 2025

TCP Connection Setup

Initialize TCP connection variables to get listen()
ready before sending data

= Initial seq. # used in each direction |
« Buffer size (rcvWindow) @ client server
connect()

3-way handshake in setting up a S
connection \\\\\\\IM@L\\\\»

1: client host sends TCP SYN segment to

server ()
NN
= SYN flag sets to 1 OK B2
» Specifies client’s initial seq #

e arandom number
= does not carry data ACk

2. server receives SYN, replies with ACK anc’ :
SYN control segment connection

= SYN and ACK flags set to 1 established
e ACK received seq#

= Specifies its own initial seq #
e also selected randomly

3: client host sends ACK connection

=« ACKfl tsto 1 '
Citleg et o, established

« May carry data

CS118 - Winter 2025 6

A TCP connection setup example

- ..src 11,14, dst: 2.2.2.2

s_port: 1030

d_port: 80

seqg_no: 10001

ack_no: 0 (not used)

00 CO1|O

rcv_w: 65535

checksum: ...

Address: 1.1.1.1

..src1.1.1.1, dst: 2.2.2.2

s_port: 1030

d_port: 80
seq_no: 10002
ack_no:
ofilofo[ofd rev_w: 65535
checksum: ...

may carry app data

<—1P header

y

A&‘

.80 2.2.2.2, dst: 1.1.1.1

s_port: 80 d_port: 1030
seg_no: 30010
ack_no:

oloj1{o] rcv_window: 2000

checksum: ...

Address: 2.2.2.2

CS118 - Winter 2025

TCP Connection Close

Either end can initiate the close of its end

1: A sends TCP FIN control
segment to the other
= FIN flag sets to 1
= This segment must not carry data

2: the other end (B) receives FIN

segment, relczlies with ACK
= regular ACK, ACK A’s FIN

3: later when B finishes sendin_? all
Its data and ready to close, |
sends FIN segment

A receives FIN, replies with ACK. 9

B receives FIN-ACK, closes

4.
connection

of the connection at any time A B
@ client server @
close()

m‘
/
/
k

lose()

connection

what should A do after sending FIN-ACK? closed

CS118 - Winter 2025

TCP Connection Close

Either end can initiate the close of its end of the

~ the other

connection at any time A B
1: A sends TCP FIN control segment to @ client Server@
close()

= FIN flag sets to 1
» This segment must not carry data

2: the other end éB) receives FIN segment,
replies with ACK

« regular ACK, ACK A’s FIN /
3: later when B finishes sending all its data lose()

and ready to close, it sends FIN
segment

FIN

ACK
/
ACKk

4. A receives FIN, replies with ACK. _
5: B receives FIN-ACK, closes connection % \
=
6: A closes the connection after waiting IS
for “long enough” time w/o receiving £
retransmitted FIN <1
= Long enough =2 x Max. Seg. Lifetime
Max. Seg. Lifetime = 2 minutes connection
connection closed
closed

CS118 - Winter 2025

When to send “connection reset”

¢ Upon a TCP connection settga request: the system sets
up a TCP Control Block (TCB)
» ldentified by: source+dest. addresses, source+dest. ports

= Connection state includes info such as

e Receiver flow control window size
o Seqg# of data

a oldest sent but unacked

a Latest sent, un.acked
e segments that arrived out of order
o etc

¢+ |f TCP receives a segment (other than SYN) it cannot
find corresponding TCB: reply with RST
» Receiver of RST aborts the connection, all data on the
connection considered lost

This can happen o
= Due to bit errors =
» By attacks: o

CS118 - Winter 2025 11

ST o) (=11
IP header B s

: Open conn.

source port # dest port #
93 accept conn

sequence number 5 S, se0=
ack=>>
acknowledgement number A,
Send 20

A RIS F| rcvr window size bytes of
request

checksum

Send 100
bytes
Response,
then close the
conn.

Application data
(variable length)

Connection
closed, wait
2MSL

A

32 bits >
conn. closed,
remove TCB

CS118 - Winter 2025 13

TCP segment format: the remaining parts

IP header

4-bit header length
(data offset: where
Data

payload data starKA
offsetly
6 unused bits — / ptr to urgent data

6 flag bits / - .
___U: urgent Options (variable length, up to 40byte)
A: ACK
~—*P: push
R: reset . :
3. SYN application
F: FIN data

(variable length)

No longer used

32 bits

v

A

CS118 - Winter 2025

14

TCP Flow Control

Flow control: Prevent sender from overrunning receiver by
transmitting too much data too fast

receiver: informs sender of amount of free buffer space
= Carried in RevWindow field of TCP header of every arriving segment,
can change dynamically

sender: keeps the amount of transmitted, unACKed data no more
than most recently received ReviWindow value

Sender’s output buffer Receiver'’s input buffer

8 free spaces (rwnd)

'''''

CS118 - Winter 2025 15

TCP loss detection and recovery

¢ TCP sets a retransmission timer (RTO) to detect
packet losses

+ A TCP connections sets one retransmission timer
on the earliest sent, but unACKed segment S
» If S gets ACKed, restart the timer on next unACKed
segment
» (reset timer when receiving ACK for new data)

* When the timer expires, retransmit starting from S

* How many segments to retransmit?
= Receiver flow control window, rwnd
= Congestion control window, cwnd (next lecture)

» the number of segments that can be retransmitted:
min[cwnd, rwnd]
e Dependent on how segment loss is detected, see next lecture

CS118 - Winter 2025 16

*

Setting TCP Retransmission Timer

TCP sets retrains. timer (RTO) based on
estimated RTT

« plus a “safety margin” (DevRTT)

SRTT: estimated “smoothed” RTT

s« SRTT=(1—a) -SRTT + a - SampleRTT
= EXxception: for the first measurement,
SRTT = SampleRTT

DevRTT: estimated RTT deviation
» DevRTT = (1 —pB)-DevRTT + B -
|ISRTT — SampleRTT |

= EXxception: for the first measurement:

DevRTT = ?

RTO: Retransmission timeout
m RTO = SRTT + 4 - DevRTT

Typical 1parame1ters:

m d = —,
8

p =

4)

L h'tpo

A B
A
: Data-1
Timeout -
too early ACK.1"
v P<
retrans. 1

Timeout
too late

SampleRTT)

/

Data-

Data-3

2

retrans. 2

\

ACK-3

CS118

- Winter 2025

17

No need to remember details
Just understand the basic idea

* Network delay: random

* How to set retransmission timer:

« Take measurements
» Set the timer based on both average, and the
variation

¢ Start the ball rolling: how to set the
retransmission timer for the first packet of a
connection?

CS118 - Winter 2025

18

One more question
How to set the RTO value for the first segment?

Set a default value by some engineered guessing

+ what if the guessed value too small?
» Unnecessary retransmissions

+ what if the guessed value too large?
» In case of first, or first few, packets being lost, wait
longer than necessary before retransmission

* Current practice:

» initial RTO = 1 sec (see RFC6298)
= Once get the first sample RTT: SRTT<«sample RTT,
DevRTT =SRTT/2

CS118 - Winter 2025 19

What to do In cases of retransmissions

¢ Taking measurement seems

infeasible

» take the delay between first -
transmission and final ACK?

» take the delay between last

retransmission of segment(n) and
ACK(n)?

¢ Don’t measure?

» Original path failed _
= New path is much longer {

timeout

/

<

» Without taking measurement, RTO
got stuck with being too short

e

CS118 - Winter 2025 20

Y

Karn’s algorithm
In case of segment retransmission:

+ do not take the RTT sample (i.e. no update to
SRTT or DevRTT)

+ double the retransmission timeout value (RTO)
after each timeout

+ Take RTT measure again upon next successful
data transmission (receiving ACK without
retransmission)

CS118 - Winter 2025 2

Computing RTO: a

difference = SampleRTT - SRTT

n example

SRTT = SRTT + 1/8 x difference client@
DeVR-I—I- = DeVRTT + Open conn. S’ Seq 3
1/4 (|difference| - DevRTT) \

RTO = SRTT + 4 x DevRTT 400ms S seq‘93
Initialize: RTO = 1 second Send 20

bytes of

request
Upon receiving first packet:

480ms

SRTT = sample RTT
DevRTT = sample RTT /2
SRTT =400, DevRTT = 200

Upon receiving second packet:
diff = 480 — 400 = 80
SRTT =400 + 10 =410
DevRTT = 200 + ¥4 (80-200) = 170

conn. Closed,

remove TCB

(from the earlier HTTP 1.0 connection example)

accept conn

Send 100B
Response,
then close
the conn.

Connectio
n closed,
wait 2MSL

CS118 - Winter 2025

22

Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

—&— SampleRTT

CS118 - Winter 2025

23

TCP Fast Retransmit

¢ RTO is set to a relatively long value

« Aim at minimizing superfluous retransmission
» long delay before resending lost packet

¢ Can detect lost segments via duplicate ACKs.
» When a segment is lost, next arrival at receiver is out of
order
= When a segment arrives out of order, receiver can
immediately sends an ACK indicating seq. # of next
byte it is expecting

* When sender receives 3 duplicate ACKs for the
same seq#(n?, it assumes the segment with
seg#(n) was lost

—>fast retransmit: start retransmitting without
waiting for the timer to expire
» How many segments to retransmit? One only

CS118 - Winter 2025 24

TCP fast retransmit example

A Seq<92 4 €g=9)
at
X ACK592 ACK592
ACKA592 +— ACKA592
3
ACK592 § ACK592
+
§ ACKS592 F ACK3592
£
+
< Seg=s9
2
WA
' e improvement
“Without fast Retransmit Y With fast retransmit Y

CS118 - Winter 2025 25

£y

Yet another tweak of TCP: delayed ACK

¢+ |f a TCP connection carries traffic in both
directions: ACKs are piggybacked on data
segments

* For one-way data flow: If receiver sends an ACK
after receiving everyone segment - double the
packet count across the Internet

* Delayed ACK: after connection setup, upon
receive one data segment S, :
» wait a bit, see if next segment S, will arrive soon
» If yes: sends an ACK for both
» If no: send an ACK for S,

Does this dela 58d—AOK serew wp RTT measurement? May be a Little

CS118 - Winter 2025 26

TCP Receiver: when to send ACK?

Event at TCP receiver

TCP Receiver action

in-order segment arrival, no gaps,
everything earlier already ACKed

delayed ACK: wait up to 500ms,
If nothing arrived, send ACK

T

in-order segment arrival, no gaps, immediately send one
one delayed ACK pending cumulative ACK
out-of-order arrival: higher-than- Immediately send ACK,

expect seq. #, gap detected
T el

arrival of segment that partially or
completely fills a gap

IS s
N—

indicating seq. # of next expected
byte

immediate send ACK if segment
starts at the lower end of the gap

_—

CS118 - Winter 2025

27

Summary
¢ Connection management (SYN, FIN)

. E(())\},(V) control for reliable delivery (sequence numbers,
» ACK is a flag in the header; ACK flag == 0, ACK number in
the header makes no sense (value ignored)

¢ Two-way communication
= Separate sequence number management for both
directions

¢ Error detection and recovery
= Retransmission timer
» Fast retransmit

* Recelver’s flow control
« Avoid overwhelming the receiver

¢ Congestion control
« Avoid overwhelming the network

CS118 - Winter 2025

28

After obtain a new RTT sample:

¢ difference = SampleRTT - SRTT
¢ SRTT’ = (1-a) Xx SRTT + o x SampleRTT

- SRT
¢+ DevRTT’ = (1-

"+ o X difference
3) x DevRTT + B x |difference]

= DevR

[+ B (|difference| - DevRTT)

¢ Retransmission Timer (RTO) = SRTT + 4 x DevRTT

Typically: oo =1/8, 3 =1/4

CS118 - Winter

29

CS118 - Winter

30

