
Lecture-2: HTTP
w Non-persistent HTTP,

persistent HTTP;
pipelining

w Web caching
w A brief intro to HTTP/2

(FYI)

CS118 - Winter 2025 1

What we covered in lecture-1
w Concepts:

n Internet: made of a huge number of hosts and routers,
interconnected by physical and wireless links

n Host: a computer running applications and bunch of
protocols to let apps exchange data with each other

n Router: a packet switch running bunch of protocols to
move packets toward their destinations

w Protocols are organized in layers:
n Application protocols
n Transport protocols
n Network protocols
n Link layer protocols
n Physical layer

w How to calculate packet delays as they move
across one hop

CS118 - Winter 2025 2

Why Layering?

Decomposed complex delivery into
fundamental components

w Explicit structure allows identification,
relationship of complex system’s pieces
n layered reference model for discussion

w Modularization eases maintenance, updating
of system
n change of implementation of layer’s service

transparent to the rest of system

CS118 - Winter 2025 3

source
application
transport
network
link

physical

HtHn M

segment Ht
datagram

destination

application
transport
network
link

physical
HtHnHl M

HtHn M

Ht M

M

network
link

physical

link
physical

HtHnHl M

HtHn M

HtHn M

HtHnHl M

router

switch

Encapsulation & Decapsulation

message M

Ht M

Hn
frame

CS118 - Winter 2025 4

Throughput

w throughput: rate (bits/time unit) at which
bits transferred between sender/receiver
n instantaneous: rate at given point in time
n average: rate over longer period of time

server, with
file of F bits

to send to client

link capacity
 Rs bits/sec

link capacity
 Rc bits/sec

server sends bits
(fluid) into pipe

pipe that can carry
fluid at rate
 Rs bits/sec)

pipe that can carry
fluid at rate
 Rc bits/sec)

CS118 - Winter 2025 5

Throughput (more)

w Rs < Rc What is average end-end throughput?

Rs bits/sec Rc bits/sec

§ Rs > Rc What is average end-end throughput?

The bottleneck link on end-end path that
constrains end-end throughput

Rs bits/sec Rc bits/sec

CS118 - Winter 2025 6

w 3 basic concepts on Monday
n Internet application processes
n Internet sockets
n Binding with address and port

w What are the procedures to construct an
Internet application?

 3 main steps
n Create an application process

l Which also needs to create an Internet socket
n Select one from 2 transport services offered by the

Internet (via sockets)
n Define your own application protocol for your Internet

application

How to develop an Internet app?

CS118 - Winter 2025 7

w Create an Internet application process at
two hosts/end systems

w Each above process creates an Internet
socket (via socket API)
n As you create a socket, you need to select what

transport service to use

Step 1: Internet application

Internet
controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

processsocket

CS118 - Winter 2025 8

Step 2: Select from 2 Internet transport
services

1. TCP service:
§ Connection-oriented: setup

required between client and
server processes

§ Reliable transfer between
sending and receiving process

§ Control:
• flow control: sender won’t

overwhelm receiver
• congestion control: throttle sender

when network overloaded

§ does NOT provide: timing,
minimum throughput guarantee,
security

2. UDP service:
§ Connectionless: no

connection setup
§ Unreliable data transfer

between sending and
receiving process

§ No control
§ You control the sending rate

§ does NOT provide:
reliability, flow control,
congestion control, timing,
throughput guarantee,
security, or connection
setup.

CS118 - Winter 2025 9

What transport service to choose for
your app?

Data integrity
§ some apps (e.g., file

transfer, web transactions)
require 100% reliable data
transfer

§ other apps (e.g.,
audio/video) can tolerate
some loss

Timing
§ some apps (e.g., Internet

telephony, interactive games)
require low delay to be
“effective”

Throughput
§ some apps (e.g.,

multimedia) require
minimum amount of
throughput to be
“effective”

§ other apps (“elastic apps”)
make use of whatever
throughput they get

Security
§ encryption, data

integrity, …

CS118 - Winter 2025 10

Apps requirements on transport service

Application

File transfer

Email

Web page

Real-time

audio/video

Streaming

audio/video

Data loss

no loss

no loss

no loss

loss-tolerant

loss-tolerant

Throughput

elastic

elastic

elastic

audio: 5Kbps-1Mbps

video:10Kbps-5Mbps

same as above

Time sensitive?

no

no

no

yes, 10’s msec

yes, few secs

CS118 - Winter 2025 11

Choices of transport protocols services
by apps

Application

File transfer

Email

Web page

Real-time

audio/video

Streaming

audio/video

Application layer protocol

FTP [RFC 959]

SMTP [RFC 5321]

HTTP 1.1 [RFC 7230]

SIP [RFC 3261], RTP [RFC 3550],

or proprietary (e.g., Skype)

HTTP [RFC 7230], DASH

Transport protocol

TCP

TCP

TCP

TCP or UDP

TCP

CS118 - Winter 2025 12

Step 3: Define your application-layer
protocol:

§ Types of messages
exchanged,
• e.g., request, response

§ Message syntax:
• what fields in messages &

how fields are delineated
§ Message semantics
• meaning of information in

fields
§ Rules for when and how

processes send & respond
to messages

Open protocols:
§ defined in RFCs,

everyone has access to
protocol definition

§ allows for interoperability
§ e.g., HTTP, SMTP
Proprietary protocols:
§ e.g., Skype

CS118 - Winter 2025 13

Choices of transport protocols services
by apps

Application

File transfer

Email

Web page

Real-time

audio/video

Streaming

audio/video

Application layer protocol

FTP [RFC 959]

SMTP [RFC 5321]

HTTP 1.1 [RFC 7230]

SIP [RFC 3261], RTP [RFC 3550],

or proprietary (e.g., Skype)

HTTP [RFC 7230], DASH

Transport protocol

TCP

TCP

TCP

TCP or UDP

TCP

CS118 - Winter 2025 14

w What are the procedures to construct an
Internet application?
n Create an application process (executing

application program)
l Which also needs to create an Internet socket

n Select from 2 of the transport services offered by
the Internet (via sockets)

n Define your own application protocol for your
Internet application

Summary: How to develop an Internet app?

Let’s look at exactly what data is exchanged
CS118 - Winter 2025 15

Web and HTTP
w Web page: normally consists of

n base HTML-file, which includes
n several referenced objects

w An object can be another HTML file, JPEG
image, Java applet, audio file,…

w Each object is addressable by a URL (Universal
Resource Locator)

16

http://www.someschool.edu:port#/someDept/pic.gif

host name path
name

Application protocol

CS118 - Winter 2025

HTTP: HyperText Transfer Protocol
w Web’s application layer protocol
w Client/Server model

n client: browser that requests,
receives, “displays” Web
objects

n server: Web server sends
objects in response to requests

w HTTP/1.0: non-persistent
connection

w HTTP/1.1: persistent connection
n May also pipelining

17

PC running
Explorer

Server
running

Apache Web
server

Mac running
Safari

HTTP request

HTTP request

HTTP response

HTTP response

CS118 - Winter 2025

HTTP runs over TCP
w Client initiates TCP connection to server on

port 80
n creates socket

w Server accepts TCP connection request from
client

w HTTP data exchanged between browser (HTTP
client) and Web server (HTTP server)

w When done: close the TCP connection
n Which side initiates the close? Later

18CS118 - Winter 2025

Now we got the big picture

w Client (browser) speaks first
n Set up a TCP connection (details later)
n Send HTTP request

w Server answers the request
n HTTP is “stateless”: server maintains no information

about past requests
Exactly how HTTP request & reply messages look like?

19

Server running
Apache Web server

Mac running
Safari

HTTP request

HTTP response

CS118 - Winter 2025

protocols that maintain “state”
are complex!
§ past history (state) must be

maintained
§ if server/client crashes, their

views of “state” may be
inconsistent, must be reconciled

HTTP request message example
Written in ASCII (human-readable)

20

GET /index.html HTTP/1.1\r\n
Host: www.httpforever.com\r\n
User-Agent: Chrome/131.0.0.0\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

request line

header lines

A blank line
indicates end
of header Optional message body

method URL version
carriage return character

line-feed character

http://www.httpforever.com:port#/some-dir/pic.gif

host name
path nameoptional, default value: 80

CS118 - Winter 2025

FYI

Method types

HTTP/1.0
w GET
w POST

n Web page often includes
form input

n User input sent from client
to server in entity body of
HTTP POST request
message

w HEAD
n Requesting the header only

(i.e. response does not
include the requested
object)

HTTP/1.1
w GET, POST, HEAD
w PUT

n uploads (or completely
replace) file in entity body
to path specified in URL
field

w DELETE
n deletes file specified in the

URL field from the server
w and a few others

n See the protocol
specification RFC2616

21

FYI

CS118 - Winter 2025

HTTP response message

22

HTTP/1.1 200 OK \r\n
Server: nginx/1.18.0 (Ubuntu)\r\n
Date: Wed, 08 Jan 2025 03:34:37 GMT\r\n
Content-Type: text/html\r\n
Content-Length: 5124\r\n
Last-Modified: Wed, 22 Mar 2023 14:54:48 GMT\r\n
Connection: keep-alive\r\n
ETag: "641b16b8-1404”\r\n
Accept-Ranges: bytes\r\n
\r\n

data data data data data ...

status line
(status code,
status phrase)

header
 lines

Data: e.g.,
requested
HTML file

A blank line

FYI

Optional message body

CS118 - Winter 2025

HTTP response status codes
w Appears in the first line in server®client

response message:
w A few sample codes:

200 OK
n request succeeded, requested object later in this

message
301 Moved Permanently
n requested object moved, new location specified

later in this message (Location:)
400 Bad Request
n request message not understood by server
404 Not Found
n requested document not found on this server
505 HTTP Version Not Supported

23

important

CS118 - Winter 2025

Trying out HTTP request for yourself

1. Telnet to a Web server:

24

Opens TCP connection to port 80
(default HTTP server port) at www.httpforever.com
Anything typed in is sent
to port 80 at www.httpforever.com

telnet www.httpforever.com 80

2. Type in a GET HTTP request:

GET /index.html HTTP/1.1
Host: www.httpforever.com

By typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server

3. Look at response message from the HTTP server!
CS118 - Winter 2025

25CS118 - Winter 2025

http://www.httpforever.com/index.html

26

<!DOCTYPE HTML>
<html>
<head>
<title>HTTP Forever</title>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta name="description" content="A site that will always be available over HTTP!" />
<meta name="keywords" content="HTTP WiFi Captive Portal" />
<!--[if lte IE 8]><script src="css/ie/html5shiv.js"></script><![endif]-->
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.3.1/jquery.min.js" integrity="sha256-
FgpCb/KJQlLNfOu91ta32o/NMZxltwRo8QtmkMRdAu8=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/skel/3.0.1/skel.min.js" integrity="sha256-
3e+NvOq+D/yeJy1qrWpYkEUr6SlOCL5mHpc2nZfX74E=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/skel-layers/2.2.1/skel.min.js" integrity="sha256-
6xgf/CipbscdlAaUOAAlWVmpfPy9V5cQvZejxXSEfcw=" crossorigin="anonymous"></script>
<script src="js/init.min.js"></script>
<noscript>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/skel-layers/2.2.1/skel.min.css"
integrity="sha256-HoTbojxjAGIeiQMgAD2nqi6adFwcOUwoiPnr7mC7qBs=" crossorigin="anonymous" />
<link rel="stylesheet" href="css/style.min.css" />
<link rel="stylesheet" href="css/style-wide.min.css" />
</noscript>
<!--[if lte IE 8]><link rel="stylesheet" href="css/ie/v8.min.css" /><![endif]-->
</head>
<body class="landing">
<section id="banner">
<h2>HTTP FOREVER</h2>
<p>A reliably insecure connection</p>
</section>
<div class="wrapper style1">
<section class="container">
<header class="major">
<h2>Why does this site exist?</h2>
<p>This domain started out as my personal 'captive portal buster' but I wanted to publicise it for anyone to

CS118 - Winter 2025

Non-Persistent HTTP (HTTP 1.0)
RTT: time between client sending
a small packet to server and
receiving the reply

Time needed to fetch a single
web object:

w one RTT to set up TCP
connection

w one RTT for HTTP request and
first byte of HTTP response to
reach the client

w object transmission time

CS118 - Winter 2025 27

initiate TCP
connection

RTT

time to
transmit
data

request
data

RTT

data
received

time time

Total = 2RTT + object transmission time

time

User clicks URL www.httpforever.com/index.html
Total time to fetch a simple web page

1. HTTP client sends TCP connection
open request to www.httpforever.com

3. HTTP client sends HTTP request
message asking for index.html

5. HTTP client receives response
message (index.html file), parsing the
html file, finds 15 referenced objects

6. Steps 1-5 repeated for each of the
15 objects

Host www.httpforever.com runs
HTTP server process, waiting for
incoming requests

2. HTTP server responds with
"accept TCP connection”

4. HTTP server receives request
message, forms a reply
containing requested object, and
sends it.

 As soon as the server receives
ACK for the reply (index.html), the
server closes TCP connection.

CS118 - Winter 2025 28

Total time: 2 x (15 +1) = 32 RTTs, plus
transmission time for the total 16 files

Q: How to improve?

At most one object is sent over one TCP connection

CS118 - Winter 2025 29

open multiple TCP
connections in
parallel, one for
each object

After opening a TCP
connection, use it to fetch
send multiple objects
(Persistent HTTP)

Persistent HTTP

Reuse the same TCP connection to transfer multiple
objects
w Server leaves connection open after sending

response
w Subsequent HTTP messages over the open

connection
w Client sends requests as soon as it encounters a

referenced object
w One RTT for each referenced object

CS118 - Winter 2025 30

time

User clicks URL www.httpforever.com/index.html
Persistent HTTP (HTTP 1.1)

1. HTTP client sends TCP connection
open request to www.httpforever.com

3. HTTP client sends HTTP request
message asking for object index.html

5. HTTP client receives response
message (index.html file), parsing the
html file, finds 15 referenced objects

Host www.httpforever.com runs
HTTP server process, waiting for
incoming requests

2. HTTP server responds with
"accept TCP connection”

4. HTTP server receives request
message, forms a reply
containing requested object, and
sends it.

CS118 - Winter 2025 31

After sending out first object, keep the
connection open for a short time period,
so if there is next request, it can use the
same connection

At Step 5: use the established TCP connection to send 15 HTTP requests
for the 15 referenced objects ⇨ total time needed: 17RTT + trans. Time
for 16 objects

HTTP 1.0 vs 1.1 summary

Nonpersistent HTTP(1.0)
w At most one object is

fetched over a single
TCP connection
between client and
server.

w Described in RFC1945
http://tools.ietf.org/html/rfc1945

Can set up multiple TCP
connections in parallel to
speed up data fetching

Persistent HTTP (1.1)
w Multiple objects can be

fetched over a single
TCP connection.

w Described in RFC2616

CS118 - Winter 2025 32

Does HTTP 1.1 need
to do the same?

http://tools.ietf.org/html/rfc1945

Persistent HTTP: one more detail
Persistent without pipelining:
w client issues next request after the previous response

has been received
w Total delay: one RTT for each object plus data

transfer time (after TCP connection setup)

Persistent with pipelining:
w client sends requests as soon as it sees a referenced

object
w Total delay: one RTT plus data transfer time for all

objects (after TCP connection setup)

CS118 - Winter 2025 33

Three factors in HTTP fetching

CS118 - Winter 2025 34

2. Use persistent
connection or not

1. Set up parallel
connections, or not

Can do No No

Can do Yes Can do both

HTTP1.0

HTTP1.1

3. Use, or not
use, pipelining

Example: Non-persistent HTTP vs. persistent
HTTP

w A web page (base html) with 10 (small) referenced
objects. How long for client to receive all them all?

n Ignore the object transmission time

n Non-persistent HTTP (with 1 object one time)
l 2RTT + 2RTT* 10 = 22 RTT

n Persistent HTTP
l 2RTT + 10 RTT = 12 RTT

n Non-persistent HTTP (5 objects in parallel)
l 2RTT + 2RTT (1~5 objects) + 2RTT (6~10 objects) = 6RTT

CS118 - Winter 2025 35

HTTP/1.0 vs HTTP/1.1 with pipelining

CS118 - Winter 2025 36

Fetching one index.html file and 10 referenced jpeg files

Open TCP conn

Fetch index file

HTTP/1.0

Repeat the above 2
steps 10 times to
get all objects Total time: 22RTT

(plus data transfer
time)

HTTP/1.1

Open TCP conn

Fetch index file

Total time: 3RTT (plus
data transfer time)

Send 10
requests, get all
objects

How to scale web services?
w Popular websites may

receive thousands of
requests per second

w Each web server can
only handle limited
number of users at any
given time

w Popular web contents
requested by many users

CS118 - Winter 2025 37

Cache popular
contents, serve
user requests
from caches

Web caching
w Configure each browser

to send web requests to
a proxy server (cache)
n For each request: open a

TCP connection with the
cache

w Cache:
n If a requested object in

cache: returns the object
n else fetches the object

from server, then returns
object to client, and save
a copy

CS118 - Winter 2025 38

client

Proxy
server

client

HTTP request

HTTP response

HTTP request HTTP request

origin
server

HTTP response HTTP response

acts as both
client and server

Example: without caching
Assumptions
w avg. web request rate = 10

reqs/sec
w average object size = 100,000 bits

n 10 objects à 1M bits

w RTT from institutional router to any
web server and back = 500msec

Consequences
w utilization on LAN = 1%
w utilization on access link = 100%

n Queuing delay at institutional router:
may grow without bound

w delay = 500msec + queuing delay
CS118 - Winter 2025 39

origin
servers

public
 Internet

institutional
network 1 Gbps LAN

1 Mbps
access link

Option-1: buy more bandwidth
Increase bandwidth of
access link to 10 Mbps
Consequences
w Can be costly
w utilization on LAN = 1%
w utilization on access link =

10%
w delay for each request

≈ 500msec+queueing delay
(negligible)

CS118 - Winter 2025 40

origin web
servers

public
 Internet

institutional
network 1 Gbps LAN

10 Mbps
access link

Option-2: Adding a local cache
Consequences
w assume hit rate = 40% requests

will be satisfied by the data in the
cache (delay ≈ 10msec)

w Remaining 60% requests served
by origin servers

w utilization of access link reduced
to 60% à much smaller queueing
delay (say 30 msec)

w avg delay for each object
= 0.6x(Internet delay + access delay) +

0.4x(LAN+cache delay)
= 0.6x(530 msec) + 0.4 x (1 msec)
= 313msec

CS118 - Winter 2025 41

origin
servers

public
 Internet

institutional
network 1 Gbps LAN

1 Mbps
access link

Institutional cache

Having a local cache: there are issues
w Configuring browsers to

use a local cache:
n What if the local cache

fails?
n What if the browser

moves?
w Two more questions

1. What if the cached
contents are obsolete?

2. What about secured
HTTP connections?

CS118 - Winter 2025 42

origin
servers

public
 Internet

institutional
network 1 Gbps LAN

1 Mbps
access link

Institutional cache

Answer to Q1: use HTTP Conditional GET
w Fetch content only if it

has changed since
previous fetch

w Cache: specify date of
cached copy in HTTP
request
If-modified-since: <date>

w server: response
contains no object if
cached copy is up-to-
date:
HTTP/1.1 304 Not Modified

CS118 - Winter 2025 43

cache server
HTTP request msg

If-modified-since:
<date>

HTTP response
HTTP/1.1

304 Not Modified

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.1 200 OK

<data>

object
not

modified

object
modified

FYI: for http status code, see
https://datatracker.ietf.org/doc/html/rfc7231

Answer to Q2: HTTPS and HTTP Proxy
w HTTPS:

n Browser connects to, and authenticates web server
n Encrypt all communications between the two ends

w A cache by local ISP can run HTTPS with web server;
your browser won’t run HTTPS with the cache

w Web caching today: performed by Content
Distribution Networks (CDNs)
n CDN providers: Akamai, Fastly, CloudFlare, others
n Your browser connects to a CDN server via HTTPs

l Websites pay CDN providers and share crypto keys with
them

l How does your browser know which CDN box to connect to?
CS118 - Winter 2025 44

CS118 - Winter 2025 45

https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP

Sir Tim Berners-Lee 2016 ACM A.M. Turing Lecture, May 29, 2018
https://www.youtube.com/watch?v=BaMa4u4Fio4

2018
HTT
P/3

https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP
https://www.youtube.com/watch?v=BaMa4u4Fio4
https://www.youtube.com/watch?v=BaMa4u4Fio4

Why HTTP/2

CS118 - Winter 2025 46

HTTP/1.1 with pipelining: not good enough
Some measurement numbers: an average Web application is
w composed of more than 90 objects
w fetched from more than 15 distinct hosts
w totaling more than 1.3MB of transferred data

n On average each object <15KB
l Some can be very big, e.g. large image files
l That means some others can be very small

HTTP/1.1’s performance issues
1. Head-of-line blocking: HTTP/1.1 handles all

requests in strict sequential order
n A request for a large file, or some dynamic

computation, can take time, blocking all requests
following it

n Work-around: open multiple TCP connections
2. Big size HTTP header with repetitive information

carried in queries
n No work-around

CS118 - Winter 2025 47

Header-of-line blocking
Time consuming
computationNeed to get answer ASAP

R1R2R3R4

A4A3A2A1

important

HTTP request and response message formats

CS118 - Winter 2025 48

• HTTP headers are ASCII-
encoded

• Requests/response between
the same 2 end nodes carry
repeated information

HTTP/2’s major new features
w Binary encoding
w Header compression
w “frame” as the basic

unit
w Use a single TCP

connection between
browser—server
n Each HTTP request à

a stream
n streams are

multiplexed, in priority
order

w Server push
CS118 - Winter 2025 49

FYI

HTTP/2: Header Compression

w Both browser & server keep a header table
until the TCP connection closes

CS118 - Winter 2025 50

HTTP/2.0: Frame, Message, Stream
w Frame: basic communication unit
w Message: an HTTP request, or response

n encoded in one or multiple frames
w Stream: a virtual channel with priority, carrying frames in

both directions

CS118 - Winter 2025 51

HTTP/2: Mitigating HOL blocking
HTTP 1.1: client requests 1 large object (e.g., video file) and
3 smaller objects

client

server

GET O1
GET O2GET O3GET O4

O1O2
O3 O4

object data requested

O1

O2
O3
O4

objects delivered in order requested: O2, O3, O4 wait behind O1

CS118 - Winter 2025 52

HTTP/2: Mitigating HOL blocking
HTTP/2: objects divided into frames, frame transmission interleaved

client

server

GET O1
GET O2GET O3GET O4

O2
O4

object data requested

O1

O2
O3
O4

O2, O3, O4 delivered quickly, O1’s finish-time slightly delayed
§ What if 2nd frame of O1 gets lost: can O2, O3, and O4 be delivered to

the browser app before the loss is recovered?

O3

O1

CS118 - Winter 2025 53

HTTP/2 Performance Improvements
w Reduced HTTP header overhead

n Binary encoding
n Header compression

w Attempted to remove head-of-line blocking
n Multiple streams, one for each http request/reply
n Big messages are broken down to multiple frames
n Frames from all streams can be interleaved

w Above approaches avoids HOL at HTTP level
n Single TCP connection between client-server à

packet losses still lead to head-of-line blocking

CS118 - Winter 2025 54

HTTP/2: a single TCP connection for multiple streams
w Streams are prioritized

CS118 - Winter 2025 55

HTTP/2 server push

CS118 - Winter 2025 56

HTTP/2 to HTTP/3

Decreased delay in multi-object HTTP requests
HTTP/2 over single TCP connection means:
§ Recovery from packet loss still stalls all object

transmissions
• as in HTTP 1.1, browsers have incentive to open multiple

parallel TCP connections to reduce stalling, increase
overall throughput

§ No security over vanilla TCP connection
§ HTTP/3: adds security , per object error and

congestion-control (more pipelining) over UDP
• more on HTTP/3 in transport layer

FYI

CS118 - Winter 2025 57

