
Lecture 15: Link Layer

6.1 Introduction, services

6.2 Error detection, correction

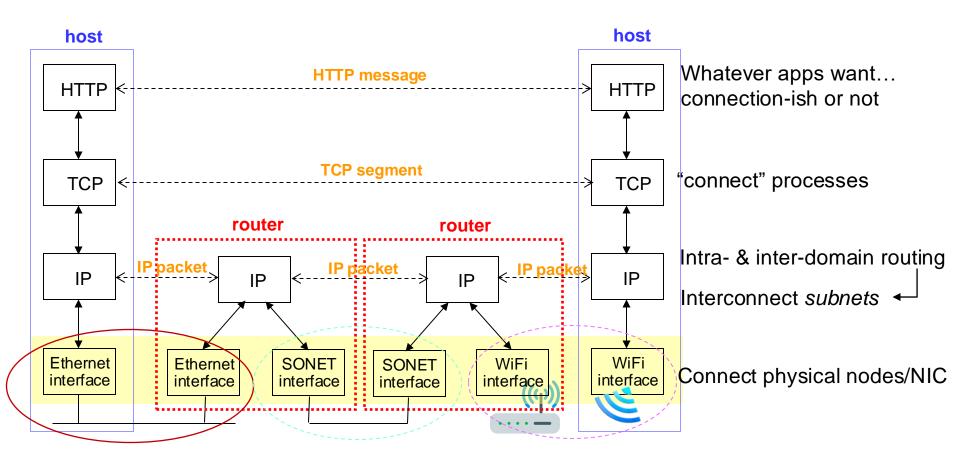
6.3 multiple access protocols

6.4 LANs

6.4.1 Addressing, ARP

6.4.2 Ethernet

6.4.3 Switches

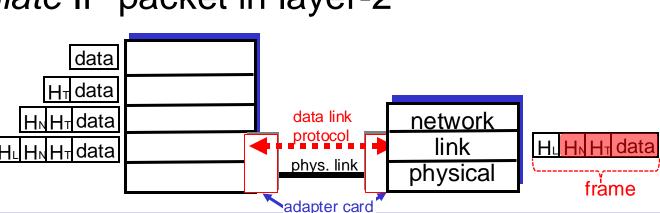

VLANS

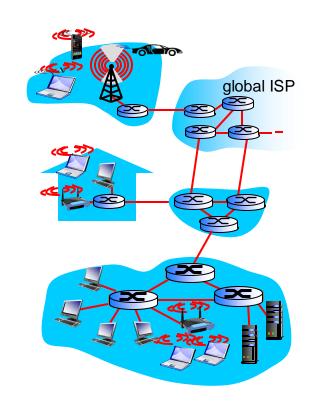
6.5 link virtualization: MPLS

6.6 data center networking

6.7 a day in the life of a web request

Where we are in the big picture




Data Link Layer: overview

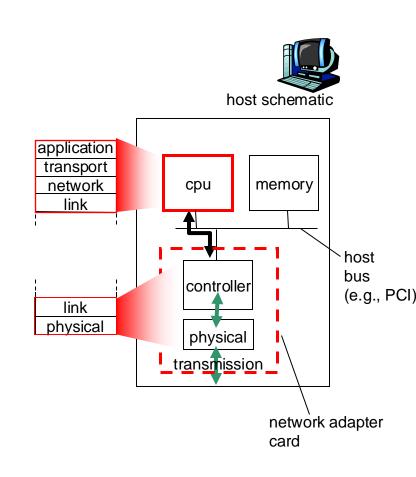
- Link layer transfers packets from one node to a physically connected node
 - Nodes: routers, hosts
- implementation of various link layer technologies:
 - Ethernet, wireless LANs, LoRA, many others

Encapsulate IP packet in layer-2

frame

Link Layer: basic concepts

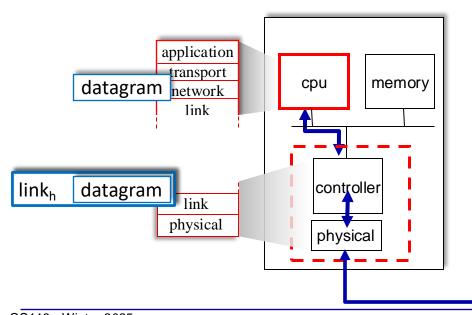
- Link layer address: MAC (Medium Access Control) addresses
- Link type: simplex, Half-duplex, full-duplex
 Multi-access links, e.g, Ethernet, WiFi
- Link layer functions:
 - Data framing (marking the beginning & end of a data chunk)
 - error detection
 - Channel access protocols

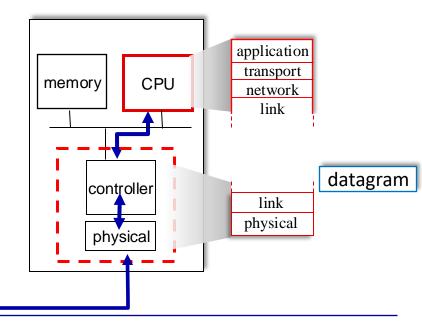


CS118 - Winter 2025 4

Where is the link layer implemented?

- Implemented in adaptor (aka network interface card, NIC) or on a chip
 - Ethernet card, PCMCI card, 802.11 card
 - implements link & physical layer
- Attached to host's system buses (e.g., PCIe)
- Combination of hardware, software, firmware


Communication between Adaptors


Sending side:

- Encapsulates IP packet in frame
- Adds error checking bits
- Follows access control protocol to send frame out

Receiving side

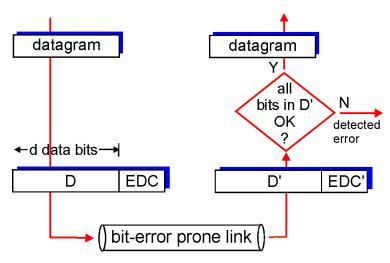
- Looks for errors
- If OK, extracts datagram, passes to upper layer at receiving side

Data Framing

- For a block of data: different name at different layer
 - at link layer: a data <u>frame</u>
 - at network layer: an IP <u>datagram</u>
 - at transport level: TCP a segment
- A frame has a header field
 - optionally there may be a trailer field as well

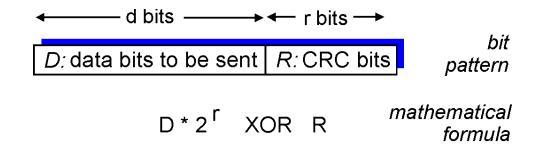
 Byte-Oriented Framing Protocol: delineate frame with a byte of special bit sequence: 01111110

Q: What if the bit sequence 01111110 occurs in data stream?


Byte stuffing

- Sender: adds ("stuffs") extra <u>01111110</u> byte after each appearance of <u>01111110</u>
- Receiver:
 - If single 01111110: flag byte
 - If 2 back-to-back 011111110 bytes: discard first byte, continue data reception
- Example:
 - Original user data: <u>01111110</u> <u>01010101</u> <u>01111110</u> <u>01111110</u>
 - After byte stuffing (before sending out):

<u>01111110</u> <u>011111110</u> <u>01010101</u> <u>011111110</u> <u>011111110</u> <u>011111110</u> <u>011111110</u>


Error Detection

- EDC= Error Detection and Correction bits
- D = Data protected by error checking
- Error detection not 100% reliable!
 - protocol may miss some errors, though rarely
 - larger EDC field offers better detection and correction

Cyclic Redundancy Check (CRC)

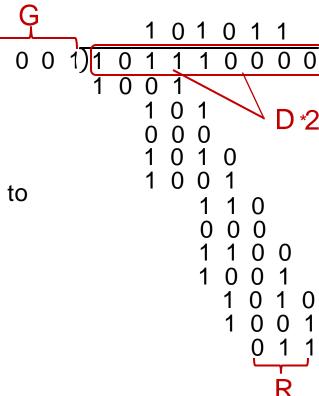
- consider a data frame as a bit sequence D
- choose a (r+1) bit pattern (generator), G
 - known to both sender and receiver
- Goal: Sender chooses r CRC bits, R, such that
 - $\langle D, R \rangle = D * 2^r \text{divisible by G (modulo 2)}$
 - receiver divides the received bit sequence by G. If non-zero remainder: error detected!
- widely used in practice (Ethernet, 802.11 WiFi)

12

CRC example

We want:

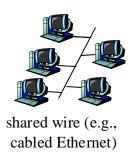
$$D \cdot 2^r XOR R = nG$$

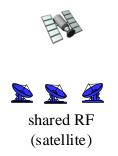

or equivalently:

$$D \cdot 2^r = nG \times R$$

or equivalently:

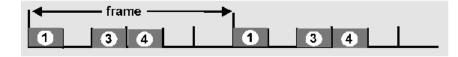
if we divide D·2^r by G, want remainder R to satisfy:


$$R = remainder \left[\frac{D \cdot 2^r}{G} \right]$$


^{*} Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Multiple-Access Links and Protocols

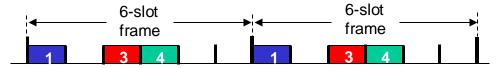
- Sharing a single transmission medium can lead to collisions
 - Two or more parties speaking at the same time (intersecting times)
 - Receivers cannot decode frames
- Multi-access protocols "coordinate" when a node can speak
 - "Hard" coordination
 - "Soft" coordination



humans at a cocktail party (shared air, acoustical)

Multiple Access Control

- An ideal solution: given a broadcast channel of rate R bit-per-sec,
 - If only one node wants to send: can send at rate R
 - If M nodes want to send: each can send at rate R/M
 - simple, no central controller
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots
- 3 classes of solutions:
 - Channel partitioning: divide the channel into pieces
 - By time/frequency/code

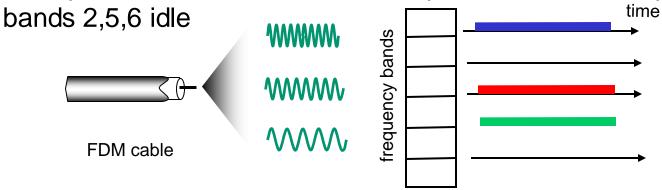


- Taking turns: coordinated access to avoid collision
- Random Access: no coordination
 - Try to avoid collisions
 - detect and resolve collisions in case they occur

Channel partitioning MAC protocols: TDMA

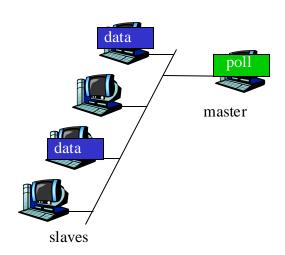
TDMA: time division multiple access

- access to channel in "rounds"
- each station gets fixed length slot (length = packet transmission time) in each round
- unused slots go idle
- example: 6-station LAN, 1,3,4 have packets to send, slots 2,5,6 idle

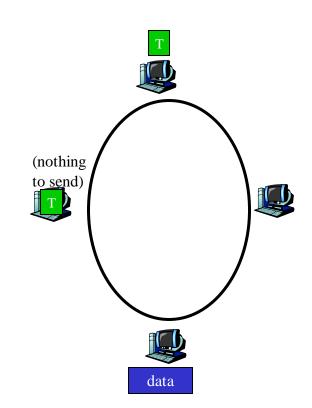


Channel partitioning MAC protocols: FDMA

FDMA: frequency division multiple access


- channel spectrum divided into frequency bands
- each station assigned fixed frequency band
- unused transmission time in frequency bands go idle

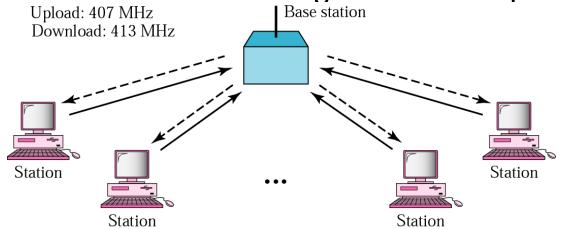
• example: 6-station LAN, 1,3,4 have packet to send, frequency


"Taking Turns" MAC protocols

- On-demand channel allocation
- Polling:
 - master node asks slave nodes to transmit in turn
 - Concerns
 - polling overhead
 - Latency
 - single point of failure (master)

"Taking Turns" MAC protocols (II)

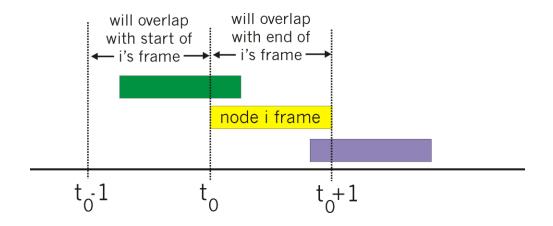
- Token passing
 - One token message passed from one node to next sequentially
 - whoever gets the token can send one data frame, then pass token to next node
- Concerns:
 - latency
 - single point of failure (the token)
- A master station generates the token and monitors its circulation
 - If token is lost, generate a new one



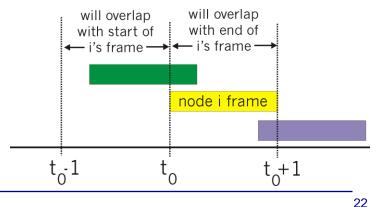
Random Access protocols

- Let a node transmit at full channel data rate R
 - no a priori coordination among nodes
 - If collision happens: detect and recover from it
- When collide (2 or more nodes transmitting at the same time), a random access protocol needs to figure out
 - how to detect a collision
 - how to recover from a collision
- Examples of random access MAC protocols:
 - ALOHA, slotted ALOHA
 - CSMA/CD, CSMA/CA
 - CSMA: channel sensing, multiple access
 - CD: collision detection
 - CA: collision avoidance

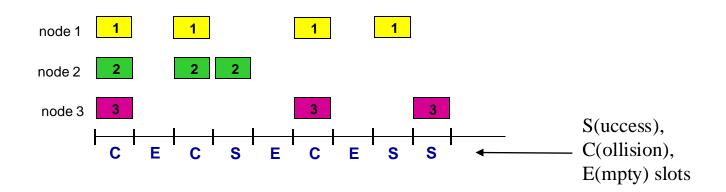
ALOHA History


- Developed by Norm Abramson at Univ. of Hawaii in 1970
 - The world's first wireless packet-switched network
- Why ALOHA
 - mountainous islands → wire-based network infeasible
 - Radio channel → high error rate → centralized control infeasible
- Upload channel: contention-based random access
- Download channel: rebroadcasting all received packets

CS118 - Winter 2025 20

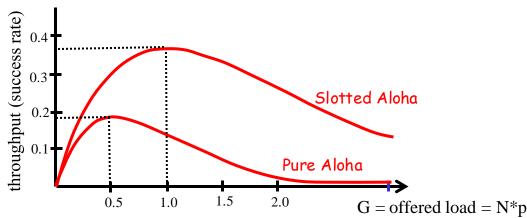

ALOHA

- If a node has data to send, send the whole frame immediately
 - If collision: retransmits the frame again with the probability p
- collision probability: assume all frames of same size, frame sent at t₀ may collide with other frames sent in [t₀-1, t₀+1]


Pure ALOHA Efficiency

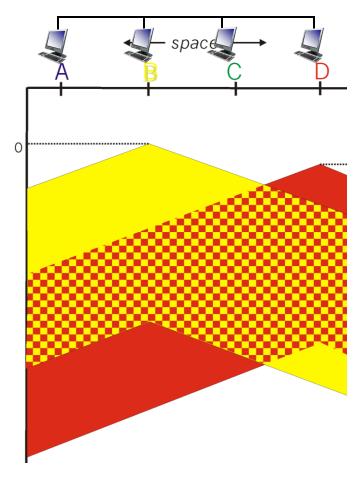
- Probability (p) to transmit a frame by one node in [t₀, t₀ + 1] while
 - no other node in the system transmits during $[t_0 1, t_0]$ (p1)
 - no other node in the system transmits during $[t_0, t_0 + 1]$ (p2)
- One node success = $p \cdot p1 \cdot p2 = p \cdot (1-p)^{N-1} \cdot (1-p)^{N-1} = p \cdot (1-p)^{2(N-1)}$
- Any node success = efficiency = $Np \cdot (1-p)^{2(N-1)}$
 - ... choosing optimum p as $N \to \infty$
 - max efficiency = $\frac{1}{2e}$ = 0.18

Slotted Aloha

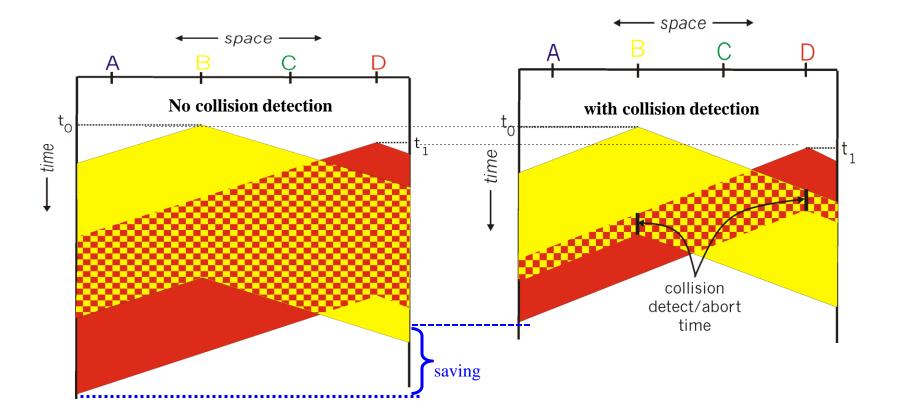

- Assumptions:
 - Divide time into equal size slots (= frame transmission time)
 - clocks in all nodes are synchronized
 - If 2 or more nodes collide in one slot, all nodes detect collision
- Operations: a node transmits only at <u>beginning</u> of next slot
 - If no collision, node can send new frame in next slot
 - If collision, retransmit in each subsequent slots with probability p, until succeed

CS118 - Winter 2025 23

Efficiency of Slotted ALOHA


- Probability (p) to transmit a frame by one node in [t₀, t₀ + 1] while
 - no other node in the system transmits during $[t_0, t_0 + 1]$ (p2)
- One node success = $p \cdot p1 = p \cdot (1-p)^{N-1} = p \cdot (1-p)^{N-1}$
- Any node success = $efficiency = Np \cdot (1-p)^{N-1}$
 - ... choosing optimum p and then letting $N \to \infty$
 - max efficiency = $\frac{1}{e}$ = 0.37

CSMA: Carrier Sense Multiple Access


- listen before transmit
 - If channel sensed idle: transmit
- If channel sensed busy, wait until it becomes idle; once idle; 1-persistent CSMA: retry immediately p-persistent CSMA: retry immediately with probability p Non-persistent CSMA: retry after a random interval
- collisions still possible:
 - Chance of collision goes up with distance between nodes

To cut the loss early: CSMA/CD

CSMA/CD (Collision Detection)

- Collision Detection: compare transmitted with received signals
- Abort collided transmissions

27

Ethernet CSMA/CD Algorithm

- 1. NIC receives datagram from network layer, creates frame
- If NIC senses channel idle, starts frame transmission. If NIC senses channel busy, waits until channel idle, then transmits
 - "1-persistent"
- 3. If NIC transmits entire frame without detecting another transmission, NIC is done with frame!
- 4. If NIC detects another transmission while transmitting, aborts and sends jam signal for a short time period
- 5. After aborting, NIC enters binary exponential backoff:
 - after m_{th} collision, NIC chooses a value K at random from {0,1,2, ..., 2^m 1}
 - NIC waits K slots, returns to Step 2
 - 1 slot= transmission time for 512 bits
 - more collisions → much longer backoff interval

An example: host H on an Ethernet with data to send, collided 2 times in a row. What's the probability H will choose K=2 for its 3rd try?

binary exponential backoff:

after mth collision, NIC chooses K randomly from {0,1,2, ..., 2^m - 1}

other computers

NIC waits K slots, returns to Step 2 (sense channel)

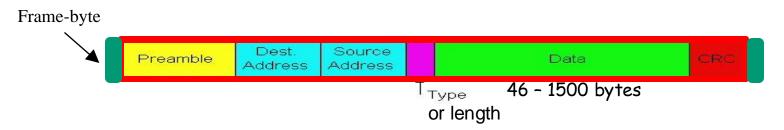
After 1st collision: choose between $[0, 2^1 - 1] = [0, 1]$:

Wait or no wait: each has 50% chance

After 2^{nd} collision: choose between $[0, 2^2 - 1] = [0, 3]$:

• Randomly pick from 0, 1, 2, or 3 time slots to wait, each gets ¼ chance

CSMA/CD efficiency

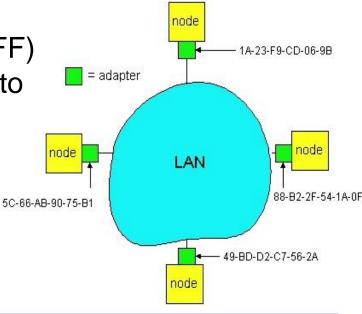

- ◆ T_{prop} = maximum propagation delay between any 2 nodes
- ◆ T_{trans} = time to transmit a maximum-sized frame

efficiency =
$$\frac{1}{1 + 5t_{prop}/t_{trans}}$$

- Efficiency approaches 1

 - as T_{prop} goes to 0
 as T_{trans} goes to infinity
- What happens when Ethernet speed changed from 10Mbps to 100Mbps, and to 1Gbps?

Ethernet Frame Structure



- The sending adapter encapsulates an IP datagram in an Ethernet frame
- Preamble: 8bytes
 - 7 bytes with pattern 10101010 followed by one byte with pattern 10101011
 - used to synchronize receiver, sender clock rates
- Addresses: 6 bytes each (MAC address)
 - If the received frame destination address matches NIC address, or is broadcast address, the adapter passes data to network layer protocol; otherwise, discards frame
- Type: 2 bytes, indicates the higher layer protocol
 - IEEE802.3 changed the "type" field to "length", defined a separate type field in the data part

CRC: 4 bytes, added by sender, checked at receiver, if error, drop the frame

Medium Access Control (MAC) Address

- Ethernet & WiFi use 48-bit MAC addresses
 - Each interface on LAN has a unique MAC address
 e.g.: 1A-2F-BB-76-09-AD hexadecimal (base 16) notation (each "number" represents 4 bits)
- Hard-coded into adapter (software settable in some cases)
 - Blocks: assigned to vendors (e.g., Apple) by IEEE
 - Adapters: assigned by the vendor from its block
- Special addresses
 - Broadcast address (FF-FF-FF-FF-FF)
 - Group addresses (01-80-C2-00-00 to 01-80-C2-FF-FF-FF)

CS118 - Winter 2025 31

MAC Address (more)

- IEEE controls MAC address allocation
 - Institute of Electrical and Electronics Engineers
- (adaptor) manufacturers buy MAC address blocks from IEEE
 - Assuring uniqueness
- MAC address is flat → portability
 - LAN (local area network) card can move from one LAN to another
- IP address is hierarchical, NOT portable
 - Tied to the network a node is attached to
- Analogy:
 - MAC address: like Social Security Number
 - IP address: like postal address

Wireless channel characteristics

- decreased signal strength: radio signal attenuates as it propagates through matter
- Interference signals from other sources
 - standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., microwave oven, cordless phone)

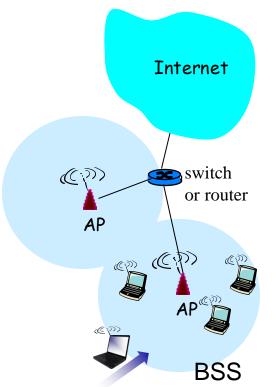
 multipath propagation: radio signal reflects off objects around (e.g. walls), arriving at destination at slightly different times

the above make communication across (even a point to point) wireless link much more "difficult"

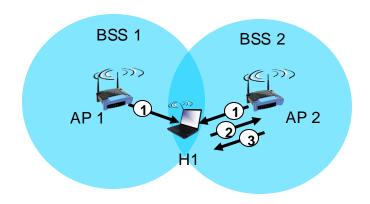
other problems with wireless channels


Hidden terminal

- B, A hear each other
- B, C hear each other
- A, C can't hear each other
- A, C may send to B at the same time, cause collision at B

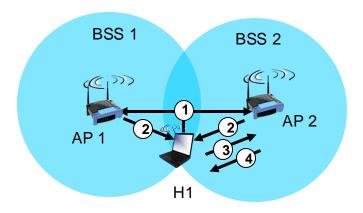

Signal attenuation

- B, A hear each other
- B, C hear each other
- ◆ A, C cannot hear each other → interference at B



IEEE 802.11 (WiFi) LAN architecture

- AP: access point (also called base-station)
 - BSS: Basic Service Set (aka "cell"), contains wireless hosts and access point (AP)
 - SSID: Service Set Identifier
- 802.11: spectrum divided into channels at different frequencies
 - Administrator chooses frequency for an AP
 - If neighbor APs use same channel ⇒ interference
- AP sends beacon frame periodically
 - Contain SSID and its own MAC address
- Arriving host: must associate with an AP before transmitting
 - scan channels, listening for beacon frames
 - then select an AP to associate with by initiating association protocol
 - then run DHCP to get IP address in AP's subnet



802.11: passive/active scanning

passive scanning:

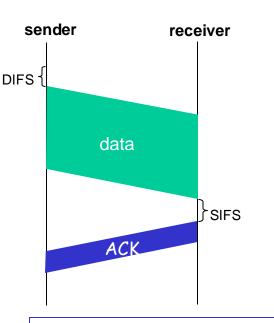
- (1)beacon frames sent from APs
- (2) Association Request frame sent from H1 to selected AP
- (3) Association Response frame sent from selected AP to H1

active scanning:

- (1) H1 broadcasts Probe Request frame
- (2) APs send Probe Response frames
- (3) H1 sends Association Request frame to selected AP
- (4) selected AP sends Association Response frame to H1

IEEE 802.11 multiple access

- Similar to Ethernet, CSMA: sense the channel before transmitting
 - avoid collision with ongoing transmission
- Unlike Ethernet:
 - no collision detection once start, transmit a frame to completion
 - Receiver sends acknowledgment enable the sender to find out whether the transmission collided or succeeded
- Why no collision detection?
 - weak received signals (fading) → difficult to receive (sense collisions) when transmitting
 - can't sense all collisions, e.g. due to hidden terminal


Goal: avoid collisions: CSMA / C(ollision)A(voidance)

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender: channel sensing

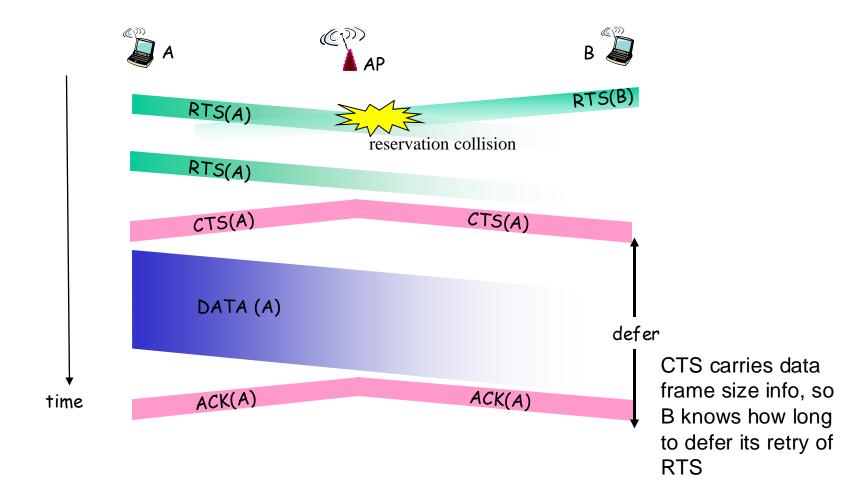
- If sense channel idle for DIFS period then transmit entire frame
- 2. Else if sense channel busy
 - start random back-off timer
 - timer counts down while channel busy
 - when timer expires
 - If channel busy, go back to step-2
 - If channel idle, start transmitting frame, then set a timer to wait for ACK
 - If ACK received: success
 - if no ACK, retry

DIFS: Distributed Inter-Frame

Spacing

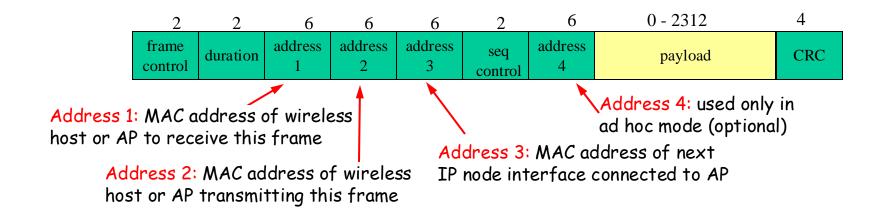
SIFS: Spacing between transmission and ACK

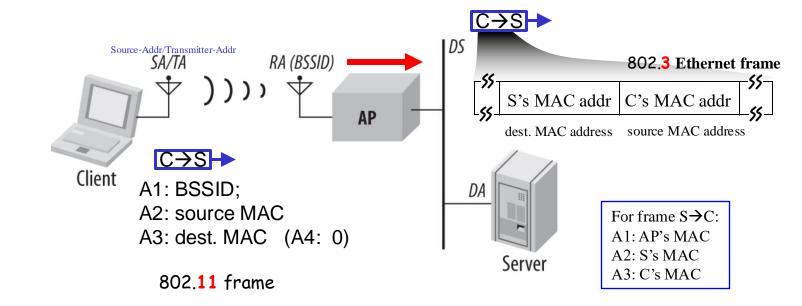
<u>802.11 receiver</u>


if frame received OK then return ACK after SIFS

Active Collision Avoidance

- idea: allow sender to "reserve" channel, to avoid collisions of long data frames
- sender first transmits a small request-to-send (RTS) packet to AP using CSMA
 - RTSs may still collide with each other (but they're short)
 - Set a retransmission timer: if no CTS arrival, retry
- AP broadcasts clear-to-send (CTS) in response to RTS
- CTS heard by all nodes within AP's wireless range
 - sender transmits its data frame
 - other stations defer transmissions


Use small packet exchanges to avoid data frame collision


Collision Avoidance: RTS-CTS exchange

FYI

802.11 frame: addressing

CS118 - Winter 2025 41

Summary of MAC protocols

- channel partitioning
 - Time Division, Frequency Division
- taking turns
 - polling from central site, or token passing
- random access
 - ALOHA, Slotted-ALOHA
 - CSMA: Carrier Sensing in Multi-Access: easy in some case (wire), harder in others (wireless)
 - CSMA/CD used in Ethernet
 - CSMA/CA used in 802.11
 - Why

CS118 - Winter 2025 4: