Lecture 13: Routing Protocols

5.1 Introduction

5.2 Routing protocols

Link state

Distance vector

5.3 Intra-AS routing in the Internet: OSPF

5.4 Routing among the ISPs: BGP

Internet routing: what we have learned so far

- Shortest path algorithms
 - Link-state (Dijkstra): each node computes its shortest paths to all other nodes using the topology map
 - Distance Vector (Bellman-Ford): each node computes its shortest paths to all other nodes based on its neighbors' distance to all destinations
- Routing protocols
 - Link-state protocol: each node's updates (link state) flood to the entire network
 - Distance-vector protocol: each node's updates (distance vector) is sent to its direct neighbors

What else a routing protocol must also do

- Monitor link and neighbor nodes status
- Once a failure is detected, send routing update to inform the rest of the network of the changes
- Mitigate potential packet losses in routing update delivery
 - Link state: explicitly tell everyone link is down
 - Distance vector: explicitly tell **neighbors** D(v) has changed

Routing in the Global Internet

- Within an administrative domain: all routers faithfully run the same routing protocol
 - A common goal: Find the *best* paths to all destinations based on delay, loss, bandwidth, or other *shared* measures
- **Global Internet**: interconnection of a large number of *Autonomous Systems (AS)*
 - Each AS is assigned a unique autonomous system number (ASN)
 - Stub AS: end user networks (corporations, campuses)
 - A stub may connects to multiple service providers (multihoming
 - Transit AS: Internet service provider
 - They may also offer connectivity to user networks (which are not ASes)

Level-3 ISP

CENIC

UCLA

Internet routing: 2-level hierarchy

- Intra-AS (within a campus, within an ISP)
 - Intra-Domain Routing protocols:
 RIP, OSPF (and a few others)
- Inter-AS (between ISPs, between stub and transit ASes)
 - Inter-Domain Routing protocol:

BGP (the only one)

Internet routing: 2-level hierarchy

- Suppose router in AS1 receives datagram destined outside of AS1
- Router should forward packet to gateway router in AS1, but which one?
- AS1 inter-domain routing must:
 - learn which destinations reachable through AS2, which through AS3
 - propagate this reachability info to all routers in AS1

Internet routing: 2-level hierarchy

- Intra-AS (within a campus, within an ISP)
 - Intra-Domain Routing protocols: RIP, OSPF (and a few others)
- Inter-AS (between ISPs, between stub and transit ASes)
 - Inter-Domain Routing protocol:
 BGP (the only one)
- intra- and inter-AS routing protocols jointly fill in each router's forwarding table
 - intra-AS sets entries for internal destinations
 - inter-AS & intra-AS sets entries for external destinations

Border Gateway Protocol: BGP Interior Gateway Protocol: OSPF, etc

important

Routing protocols in use today

- Open Shortest Path First (OSPF)
 - use link-state computation ⇒ the protocol delivers the complete topology map to all the nodes in the network
- Border Gateway Protocol (BGP)
 - path-vector (≈ distance-vector) ⇒ the protocol delivers one's reachability to (not necessarily all) destinations to direct neighbors

Why different Intra- and Inter-AS routing ?

- Policy:
 - Inter-AS: admin wants control over how its traffic routed, who routes through its net.
 - Intra-AS: single admin, so no policy decisions needed
- Scale:
 - hierarchical routing saves table size, reduced update traffic
- Performance:
 - Intra-AS: can focus on performance
 - Inter-AS: policy may dominate over performance

BGP: Border Gateway Protocol (next lecture)

BGP provides each AS a means to:

- 1. Advertise its own IP address prefixes to the rest of the Internet
- 2. Obtain IP address prefix reachability info from neighboring ASes
- 3. Propagate the reachability info to all routers *internal to the AS*.
- 4. Determine "good" routes to use for learned reachability to destination prefix and policy
 - Performing the above 4 tasks
 - propagating (partial) prefix reachability info to (some of) the neighbors

OSPF (Open Shortest Path First)

- Each node knows its directly connected neighbors & the link cost
- Each node sends a Hello msg to each neighbor periodically
 - monitor link and neighbor nodes status
- Each node broadcasts link-state advertisement (routing update) to the entire network
 - Periodically, or
 - when the status of any neighbor/link changes
- FYI: OSFP msgs are sent over raw IP packet
 - protocol ID = 89
 - Implication?

Building a complete network graph using Link State info from each node

- Every node broadcasts its local piece of the topology graph
- collecting all the pieces from all the nodes, one can put together the complete graph

Then each node carries out its <u>own</u> routing calculation *independently*

A side note: exactly what to reach?

5

B

2

3

223.1.3.5

5

2

223.1.3.2

223.1.3.27/24

F

(routers versus prefixes)

- Each subnet is allocated a spec address block (= address prefix, c
- Each subnet is connected to on more routers
- Ultimate goal of routing: reachability to all prefixes
- Link-state routing: figure out how to reach the router which can reach the destination (prefix)

Link-State Protocol

Assuming every node knows the network topology graph with link cost

- Each node advertises local link cost to every other node
- Need reliable flooding
- The three basic elements
 SeqNo, timer, ACK
- Is SeqNo alone enough?
 - Assign a sequence # to each piece of data: *uniquely identifies individual packet*

Unique ID: Router ID + SeqNo

Link-State Advertisement (LSA)

- ID of the node that created the LSA (LinkState ID)
- Sequence number for this LSA message
- A list of direct neighbors, with link cost to each
 - one entry per neighbor router
- LinkState age: the LSA's lifetime

Each LSA can be uniquely identified by the combination of [LinkState ID, SeqNo]

How OSPF Works

- When neighboring routers discover each other for the first time: Exchange link-state database
- Link failure detection

- Neighbor nodes send HELLO msg to each other periodically
 - Default frequency: every 10 seconds
- No HELLO message for long enough time → failure
 detected → send updated Link State Advertisement
 - Default RouterDeadInterval: 40 seconds
- In the absence of failure: send LSA every 30 minutes

Link-State Routing Daemon

A routing daemon running at each router:

- Send periodic HELLO msgs to neighbors,
- Generates LSA either periodically or event-driven, each carries an increasing sequence #
- Upon receiving a *new* LSA, a router **R**
 - replay it (intact) to all other neighbors
 - process the LSP to update *R*'s topology graph
 - compute shortest paths
- Each router stores most recent LSA from all others
 - decrement the TTL of stored LSAs
 - discard a LSA when its TTL=0

- Each node replays a received new LSA to all neighbor nodes except the one that sent it
- Receive ACK from neighbor, otherwise retransmit the LSA
 - Deliver all LSAs reliably across each hop
 - use the Link-State-ID and SEQ# in a LSA to detect duplicates

Resulting Directed Graph

- Link cost can be asymmetric
- Router stores LSAs in LSDB
 - Then derives the directed graph
- Start Dijkstra with the the direct graph
 - Generate FIB
 - If table update, then recompute

source sink	X	Α	В	С	D
Х		2		1	
А	1		1		
В		2		1	2
С	1		1		
D			2		

What if router X crashed?

- No Hello msg for a long time (~40s)
 - A and C send new LSA
 - Reliable flooding among [A, B, C, D]
- What would happen if X came online?
 - Hello to discover, reliably flood LSA
 - Wait, what's my last sequence number???
 - LSDB typically on RAM for performance reason
 - Lower SeqNo, stale LSA
 - Same SeqNo, duplicate
- Rebuilding LSDB from neighbors

Q: Why TCP does not need to do this?

OSPF for a single, big AS domain: Hierarchical OSPF

- Two-level hierarchy: local area, backbone.
 - LSAs flooded only in area, or backbone
 - each node has detailed area topology; only knows direction to reach other destinations

Area summary is also LSA, containing tuples of [netaddr, netmask, cost]

1. Run OSPF within area 1

1. Run OSPF within area 1, 2, 3

1. Run OSPF within area 1, 2, 3

3. Router K in Area 3 updates its table based on R₆

network protocol's job: forward packets to their destination hosts

- A really difficult task: the Internet is large, run by a very large number of different parties
 - connection from your laptop to cs118.org website:
 WiFi → campus backbone → local ISP → backbone ISP → Cloudflare

A clarification of terminology: **AS, Institution, Network, DNS Domain**

- An AS is not equivalent to a single institution
 - Some institutions own multiple autonomous systems
 - Many institutions do not have their own AS number
- An AS is not equivalent to a block of IP addresses (prefix)
 - Many institutions use multiple (non-contiguous) prefixes
 - UCLA: 131.179/16, 128.97/16, 149.142/16, 164.67/16, 169.232/16
 - Many institutions use a small portion of a larger address block belonging to their ISPs
- An AS is not equivalent to a DNS domain
 - Commonality: an AS or a DNS domain is under a single administrative authority
 - Difference: AS—a unit of topology; DNS domain: independent from network topological connectivity
 - A company can have multiple domain names (att.net, att.com)
 - A DNS domain may not correspond to any AS

Summary

- Two levels of routing: BGP and OSFP
- BGP deals with ASes
 - Announcing self AS prefix out
 - Propagate learned prefixes to internal routers
 - Propagate "appropriate" learned prefixes to neighbor Ases
- OSPF (as IGP) directly runs over IP
 - Periodic Hello msg to discover neighbors
 - Link State Advertisement describing local link states
 - Reliable LSA flooding
 - [Router ID + SeqNo], retransmission timer, ACK
 - Replays LSA to all possible downstreams
 - Hierarchical to reduce LSDB size
 - Focus on local topology

- Assuming X sends a LSA and no packet loss, all links are symmetric and same bandwidth with negligible propagation delay
- Before all LSDBs are synchronized, how many duplicate LSAs will be detected?
- Phase 1: $X \rightarrow A, C$
- Phase 2
 - $C \rightarrow A$, B (without knowing A)
 - $A \rightarrow C$, B (without knowing C)
 - A, B, C detect the duplicates
 - A or C, depends on who arrives first
- Phase 3: B→D

- No packet loss, all links are symmetric and same bandwidth with negligible propagation delay
- X-D link is broken
- Before LSDBs are synchronized, how many duplicate LSAs will be detected?

Practice Question 2 (contd.)

- X, D sends out LSP updates
- Phase 1
 - X→A, C
 - $D \rightarrow B$

 $\{X, A, C\}$ (the set of flooded node) {D, B}

- Phase 2
 - A→C, B
 - C→A, B
 - A, B, C detect the duplicates
 - A or C, depends on whose replay arrives first
 - {A, B, C, D} • $B \rightarrow A, C$
- Phase 3
 - A→C, X
 - $C \rightarrow A, X$

{X, A, B, C, D} {X, A, B, C, D}

{X, A, B, C, D}

{X, A, B, C}

{X, A, B, C}

- X, A, C detect the duplicates
- Same, depends on whose replay arrives first
- $B \rightarrow D$

- No packet loss, all links are symmetric with equal cost, and same bandwidth with negligible propagation delay
- X-D link is broken
- After LSDBs are synchronized, whose routing table has changed? (Breaking the tie by ASCII value (A<B))
- X, D changed routing table

- No packet loss, all links are symmetric with equal cost, and same bandwidth with negligible propagation delay
- B-D link is broken
- After LSDBs are synchronized, whose routing table has changed? (Breaking the tie by ASCII value (A<B))
- B and D for sure
- A, C also change their routing tables
 - $A \rightarrow B, A \rightarrow C, \textbf{A} \rightarrow \textbf{X} \rightarrow \textbf{D}, A \rightarrow X$
 - $C \rightarrow A, C \rightarrow B, C \rightarrow X \rightarrow D, C \rightarrow X$
 - $X \rightarrow A, X \rightarrow A \rightarrow B, X \rightarrow C, X \rightarrow D$

Q: Will A and C notify others about the table change?

- No packet loss, all links are symmetric with equal cost, and same bandwidth with negligible propagation delay
- B-D link is broken
- OSPF and RIP (FYI, a DV-based routing protocol), which sends more routing updates?
- OSPF: 2 LSAs reliably flooded
- RIP: who has changed routing table?
 A, B, C, D

