
Caveat: Lecture 9 P1

▪ Where are the subnets?

▪ What are the /24 subnet 
addresses?

▪ How many interfaces I 
can address in subnet 
223.1.2.1/24?

223.1.1.1

223.1.1.3

223.1.1.4

223.1.2.2

223.1.2.6

223.1.3.2
223.1.3.1

223.1.3.27

223.1.1.2

223.1.7.0

223.1.7.1

223.1.8.0223.1.8.1

223.1.9.1

223.1.9.2

223.1.2.1

subnet 223.1.1/24

subnet 223.1.7/24

subnet 223.1.3/24subnet 223.1.2/24

subnet 223.1.9/24

subnet 223.1.8/24

1

00000000 ~ 11111111

256 - 2 = 253
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Lecture 12: Where we are in the textbook

5.1 Introduction

5.2 Routing algorithms

 Link state

 Distance vector

5.3 Intra-AS routing in 

the Internet: OSPF

5.4 Routing among the 

ISPs: BGP

5.5 The SDN control 

plane

5.6 ICMP: The Internet 

Control Message 

Protocol (covered 

briefly in lecture 12)

5.7 Network 

management and 

SNMP

Will not cover 5.5-5.7
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Network-layer functions

 Forwarding: move packets from a router’s input to 

appropriate output interface

 Routing: determine the path taken by packets to 

reach destinations

3

data plane

routing plane, or control plane

Two ways to structuring network routing/control:

▪ per-router control (traditional)
• Routers run routing protocol to set up forwarding table

▪ (logically) centralized control (more recent)
▪ Software defined networking (SDN)
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Routing
Algorithm

Using the info learned from other routers through routing 

protocols, each router runs the routing algorithm to compute 

forwarding table

forwarding/data
plane

routing/control
plane

Per-router control plane

4

routing protocol msg exchange
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How to find the best path to a destination?

5

A

E
D

CB

F

1 1

1

2

2

3

Need computation algorithm 

to find the best path from one 

point to any other point 
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If we abstract a network as a graph,

from each node (router) to a given destination
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Network Graph Abstraction

6

Graph: G: a set of nodes & edge

N = set of routers = { A, B, C, D, E, F }

E = set of links ={ (A,B), (A,C), (A,D), (B,C), (B,D), (C,D), (C,E), (C,F), (E,F) }

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5

Cost of link (a, b) = C(a, b)

–  e.g. C(A, B) = 2, C(B, C) = 3

Cost of path (x1, x2, x3,…, xp) = C(x1,x2)+C(x2,x3)+ … + C(xp-1,xp)  

Route computation algorithm: given a graph, find least-cost 

path from a given node to all the other nodes in the graph
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Network Routing: algorithms vs. protocols

Route computation algorithms:

link-state (Dijkstra): given a 
complete topology graph 
with all  nodes and link 
costs, each node performs 
its own computation of 
shortest paths to all 
destinations

distance-vector (Bellman-
Ford): each node knows its 
link cost to neighbors, and 
computes its shortest paths 
to all destinations based on 
the shortest paths of its 
neighbors

Routing protocols

 Define the format of routing 

information exchanges

 Define the computation upon 

receiving routing updates

 Network topology changes 

over time → continuously 

updates all routers with 

latest changes

7
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Link-State algorithm

Assuming every node knows the 

network topology graph with link 

cost

 Each node computes least cost 

paths from itself to all the other 

nodes
◼ determine the next hop of the 

best path to each destination

 Iterative operation: after k 

iterations, a node knows the best 

paths to k destinations

8
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Link-State algorithm: basic notations

 c(x,y): link cost from neighbor 

node x to node y

 D(v): current value of path cost 

from source to destination v
◼ Initializes to ∞ if nodes (i, j) are 

not direct neighbors
⚫ e.g. A’s init. view: D(e) = D(f) = ∞

 p(v): the node right before v 

along best path from source to v
◼ from A’s view, best path from A to C 

is A-D-E-C, p(c)=E

9
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Link-State algorithm

10

consider the computation done at node A

N': set of nodes whose least-cost paths has been found

1  Initialization: 

2   N' = {A}

3   for all nodes v 
4     if v adjacent to A 

5       then D(v) = c(A,v) 

6       else D(v) = ∞

7 

8   Loop 
9 find w not in N' such that D(w) is minimum: 

10     add w to N' 

11     update D(v) for all v adjacent to w and not in N': 

12        D(v) = min( D(v), D(w) + c(w,v) ), p(v) = w

13 /* new cost to v is either the old cost, or the
14    shortest path cost to w plus the cost from w to v */ 

15  until all nodes in N' 
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Link-State algorithm: example

11

Step

0
start N'

A

D(B),p(B)

2,     A
D(C),p(C)

5,     A

D(D),p(D)

1,     A
D(E),p(E)



D(F),p(F)


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Link-State algorithm: example

12

Step

0

1

start N'

A

AD

D(B),p(B)

2,     A

2,     A

D(C),p(C)

5,     A

4,     D

D(E),p(E)


D(F),p(F)



A

ED

CB

F

2

2

1
3

1

1

2

5
3

5

2,     D

D(D),p(D)

1,     A
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Link-State algorithm: example

13

Step

0

1

2

start N'

A

AD

ADE

D(B),p(B)

2,     A

2,     A

D(C),p(C)

5,     A

4,     D

3,     E

D(E),p(E)


D(F),p(F)



4,     E

A

ED

CB

F

2

2

1
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1
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5
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2,     D

D(D),p(D)

1,     A
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Link-State algorithm: example

14

Step

0

1

2

3

start N’

A

AD

ADE

ADEB

D(B),p(B)

2,     A

2,     A

D(C),p(C)

5,     A

4,     D

3,     E

3,     E

D(D),p(D)

1,     A
D(E),p(E)



A

ED

CB

F

2

2

1
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1

1

2

5
3

5

2,     D

D(F),p(F)



4,     E
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Link-State algorithm: example

15

Step

0

1

2

3

4

start N’

A

AD

ADE

ADEB

ADEBC

D(B),p(B)

2,     A

2,     A

D(C),p(C)

5,     A

4,     D

3,     E

3,     E

D(D),p(D)

1,     A
D(E),p(E)



D(F),p(F)



4,     E

4,     E
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Link-State algorithm: example

16

Step

0

1

2

3

4

5

start N’

A

AD

ADE

ADEB

ADEBC

ADEBCF

D(B),p(B)

2,     A

2,     A

D(C),p(C)

5,     A

4,     D

3,     E

 3,     E

D(D),p(D)

1,     A
D(E),p(E)



D(F),p(F)



4,    E

4,    E
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Link-State algorithm: example

17
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F
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B
D

E

C

F

(A, B)

(A, D)

(A, D)

(A, D)

(A, D)

Destination Next Hop

Resulting forwarding table at A:Resulting shortest-path tree for A:

Step

0

1

2

3

4

5

start N’

A

AD

ADE

ADEB

ADEBC

ADEBCF

D(B),p(B)

2,     A

2,     A

D(C),p(C)

5,     A

4,     D

3,     E

 3,     E

D(D),p(D)

1,     A
D(E),p(E)



D(F),p(F)



4,    E

4,    E

2,     D
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Link-State algorithm: discussion

Algorithm complexity: for a graph with n nodes

 each iteration: need to check all nodes, w, not in N'

 n(n+1)/2 comparisons: O(n^2)
◼ more efficient implementations possible: O(nlogn)

Oscillations possible:

 e.g., link cost = amount of carried traffic

18
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Link-State algorithm: discussion

Algorithm complexity: for a graph with n nodes

 each iteration: need to check all nodes, w, not in N'

 n(n+1)/2 comparisons: O(n^2)
◼ more efficient implementations possible: O(nlogn)

Oscillations possible:

 e.g., link cost = amount of carried traffic

19
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Distance Vector Algorithm

Summery of Link-State algorithm:

 Each node knows the complete topology graph 

with link costs

 Each node calculate the shortest path to all other 

nodes

For Distance-Vector algorithm:

 Each node know only needs from each direct 

neighbor its list of distances to all destinations

 Each node computes shortest path based on the 

input from all its neighbors 
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Distance Vector Algorithm 

Bellman-Ford equation (dynamic programming)

let

   dx(y) := cost of least-cost path from x to y

then

   dx(y) = min {c(x,v) + dv(y) }

   

21

v

cost to neighbor v

min taken over all neighbors v of x

cost from neighbor v to destination y
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Dx(y) = min {c(x,v) + Dv(y) }
◼ where min is taken over all neighbors v of x

Distance Vector Equation

22

DA(F) = min {c(A,B) + DB(F),

                      c(A,D) + DD(F),

                      c(A,C) + DC(F) }

         = min {2 + 5,

                     1 + 3,
                     5 + 3}  = 4

Node leading to the shortest path is next 
hop to be saved in the forwarding table
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( DB(F)=5, DD(F) = 3,  DC(F)  = 3 )   C
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Distance Vector: what a node does

1. Node x initialization: link cost to neighbor v: c(x,v)

2. x maintains Dx = [Dx(y): y є N ]
⚫ Dx(y) = estimate of least cost from x to y

3. x sends its distance vector, Dx, to all its neighbors

4. x receives Dv from each neighbor v, calculates 
D’x(y) = min {c(x,v) + Dv(y)} 
If D’x(y) < Dx(y):(going through v to reach y is a shorter path) 

◼ next hop to y = v (x picks v as next hop to reach y)

◼ Dx(y) = D’x(y)

◼ Send out the updated Dx

23

x informs all its neighbors of its newly  

changed distance vector 
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Distance Vector Protocol

Iterative, asynchronous:

 Each local iteration caused by: 
◼ local link cost change 
◼ DV update message from 

neighbor

 Continues until no nodes 
exchange info.

Distributed:

 Each node notifies neighbors 
only when its DV changes
◼ neighbors then notify their 

neighbors if necessary

Asynchronous: nodes need not 
Exchange info/iterate in lock 
step

24

wait for (change in local 

link cost of msg from 

neighbor)

recompute estimates

if DV to any dest has 

changed, notify neighbors 

Each node:
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DV
Da(a)=0

Da(b) = 8

Da(c) = ∞

Da(d) = 1

Da(e) = ∞

Da(f) = ∞

Da(g) = ∞

Da(h) = ∞

Da(i) = ∞

Distance vector: example

g h i

1 1

1 1 1

1 1

1 1

8 1

t=0

▪ All nodes have 
distance 
estimates to 
nearest 
neighbors (only)

A few asymmetries:
▪ missing link

▪ larger cost

d e f

a b c

▪ All nodes send 
their local 
distance vector 
to their 
neighbors

25CS118 - Winter 2025



Distance vector example: iteration

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their 
new local  
distance vector

▪ send their new 
local distance 
vector to 
neighbors

t=1

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c
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Distance vector example: iteration

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their 
new local  
distance vector

▪ send their new 
local distance 
vector to 
neighbors

t=1

compute compute compute

compute compute compute

compute compute compute
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Distance vector example: iteration

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their 
new local  
distance vector

▪ send their new 
local distance 
vector to 
neighbors

t=1
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Distance vector example: iteration

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their 
new local  
distance vector

▪ send their new 
local distance 
vector to 
neighbors

t=2
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Distance vector example: iteration

g h i

1 1

1 1 1

1 1

8 1

2 1

d e f

a b c

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their 
new local  
distance vector

▪ send their new 
local distance 
vector to 
neighbors

t=2

compute compute compute

compute compute compute

compute compute compute
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Distance vector example: iteration

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their 
new local  
distance vector

▪ send their new 
local distance 
vector to 
neighbors

t=2
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DV in a: 
Da(a)=0

Da(b) = 8

Da(c) = ∞

Da(d) = 1

Da(e) = ∞

Da(f) = ∞

Da(g) = ∞

Da(h) = ∞

Da(i) = ∞

Distance vector example: computation

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ b receives DVs 
from a, c, e

a b c

d e f

DV in c:

Dc(a) = ∞

Dc(b) = 1

Dc(c) = 0

Dc(d) = ∞

Dc(e) = ∞

Dc(f) = ∞

Dc(g) = ∞

Dc(h) = ∞

Dc(i) = ∞

DV in e:

De(a) = ∞

De(b) = 1

De(c) = ∞

De(d) = 1

De(e) = 0

De(f) = 1

De(g) = ∞

De(h) = 1

De(i) = ∞
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Distance vector example: computation

DV in a: 
Da(a)=0

Da(b) = 8

Da(c) = ∞

Da(d) = 1

Da(e) = ∞

Da(f) = ∞

Da(g) = ∞

Da(h) = ∞

Da(i) = ∞

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

DV in c:

Dc(a) = ∞

Dc(b) = 1

Dc(c) = 0

Dc(d) = ∞

Dc(e) = ∞

Dc(f) = ∞

Dc(g) = ∞

Dc(h) = ∞

Dc(i) = ∞

DV in e:

De(a) = ∞

De(b) = 1

De(c) = ∞

De(d) = 1

De(e) = 0

De(f) = 1

De(g) = ∞

De(h) = 1

De(i) = ∞

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1
▪ b receives DVs 

from a, c, e, 
computes:

a b c

d e f

DV in b:

Db(f) =2
Db(g) = ∞
Db(h) = 2
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = 2
Db(e) = 1

e

computeb

Db(a) = min{cb,a+Da(a), cb,c +Dc(a), cb,e+De(a)}  = min{8,∞,∞} = 8 

Db(c) = min{cb,a+Da(c), cb,c +Dc(c), c b,e +De(c)}  = min{∞,1,∞} = 1 

Db(d) = min{cb,a+Da(d), cb,c +Dc(d), c b,e +De(d)}  = min{9,2,∞} = 2 

Db(f) = min{cb,a+Da(f), cb,c +Dc(f), c b,e +De(f)}  = min{∞,∞,2} = 2 

Db(i) = min{cb,a+Da(i), cb,c +Dc(i), c b,e+De(i)}  = min{∞, ∞, ∞} = 

∞ 

Db(h) = min{cb,a+Da(h), cb,c +Dc(h), c b,e+De(h)}  = min{∞, ∞, 2} = 

2 

Db(e) = min{cb,a+Da(e), cb,c +Dc(e), c b,e +De(e)}  = min{∞,∞,1} = 1 

Db(g) = min{cb,a+Da(g), cb,c +Dc(g), c b,e+De(g)}  = min{∞, ∞, ∞} = ∞ 
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DV in a: 
Da(a)=0

Da(b) = 8

Da(c) = ∞

Da(d) = 1

Da(e) = ∞

Da(f) = ∞

Da(g) = ∞

Da(h) = ∞

Da(i) = ∞

Distance vector example: computation

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ c receives DVs 
from b

a b c

d e f

DV in c:

Dc(a) = ∞

Dc(b) = 1

Dc(c) = 0

Dc(d) = ∞

Dc(e) = ∞

Dc(f) = ∞

Dc(g) = ∞

Dc(h) = ∞

Dc(i) = ∞

DV in e:

De(a) = ∞

De(b) = 1

De(c) = ∞

De(d) = 1

De(e) = 0

De(f) = 1

De(g) = ∞

De(h) = 1

De(i) = ∞
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Distance vector example: computation

g h i

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ c receives DVs 
from b 
computes:

a b c

d e f

DV in c:

Dc(a) = ∞

Dc(b) = 1

Dc(c) = 0

Dc(d) = ∞

Dc(e) = ∞

Dc(f) = ∞

Dc(g) = ∞

Dc(h) = ∞

Dc(i) = ∞

Dc(a) = min{cc,b+Db(a}} = 1 + 8 = 9 

Dc(b) = min{cc,b+Db(b)} = 1 + 0 = 1

Dc(d) = min{cc,b+Db(d)} = 1+ ∞ = ∞ 

Dc(e) = min{cc,b+Db(e)} = 1 + 1 = 2

Dc(f) = min{cc,b+Db(f)} = 1+ ∞ = ∞ 

Dc(g) = min{cc,b+Db(g)} = 1+ ∞ = ∞ 

Dc(i) = min{cc,b+Db(i)} = 1+ ∞ = ∞ 

Dc(h) = min{cbc,b+Db(h)} = 1+ ∞ = ∞ 

DV in c:

Dc(a) = 9

Dc(b) = 1

Dc(c) = 0

Dc(d) = 2

Dc(e) = ∞

Dc(f) = ∞

Dc(g) = ∞

Dc(h) = ∞

Dc(i) = ∞

compute
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Distance vector example: computation

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ e receives DVs 
from b, d, f, h

a b c

DV in f:

Dc(a) = ∞

Dc(b) = ∞

Dc(c) = ∞

Dc(d) = ∞

Dc(e) = 1

Dc(f) = 0

Dc(g) = ∞

Dc(h) = ∞

Dc(i) = 1

DV in e:

De(a) = ∞

De(b) = 1

De(c) = ∞

De(d) = 1

De(e) = 0

De(f) = 1

De(g) = ∞

De(h) = 1

De(i) = ∞

DV in h:

Dc(a) = ∞

Dc(b) = ∞

Dc(c) = ∞

Dc(d) = ∞

Dc(e) = 1

Dc(f) = ∞

Dc(g) = 1

Dc(h) = 0

Dc(i) = 1

DV in d:

Dc(a) = 1

Dc(b) = ∞

Dc(c) = ∞

Dc(d) = 0

Dc(e) = 1

Dc(f) = ∞ 

Dc(g) = 1

Dc(h) = ∞

Dc(i) = ∞

d e f

g h i

Q: what is new DV computed in 
e at t=1?

compute
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Count-To-Infinity Problem

 Assume we use hop count as metric
◼ A uses B to reach D with cost 3

◼ B uses C to reach D with cost 2

◼ C reaches D with cost 1

37

A/3 B/2 C/1 D

 Suppose link between C and D breaks

◼ Since B informs its neighbors its distance to D is 

2, C switches to B, sets its cost to (2+1= 3)

B’s cost to reach D

C sends to B the 

packets destined to D
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Count-To-Infinity Problem (cont.)

 B’s path cost is now 4
◼ A has not realized what has happened yet

 Once heard B’s cost=4, A & C change their cost to 5

 B hears C’s cost=5, B changes its cost to D to 6
◼ Cycle repeats, the distance “counting to infinity” 

◼ Meanwhile data packets from A to D loop between B 

and C
38

A/3 B/4 C/3 D

A/5 B/4 C/5 D
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Split Horizon

 Because B reaches D via C, B tells C nothing 

about node D
◼ A tells B nothing about nodes C and D

39

A/3 B/2 C/1 D

A router should not advertise a route back to the 

same interface from which it learned it
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Split Horizon: not effective in many cases

 Suppose the link between C and D breaks 

40

A

B C

D

1. A and B do not tell C they can reach D

• They do tell each other

• A→B: my distance to D is 2

• B→A: my distance to D is 2

2. When C fails

• A sends to B the packets with 

destination=D

• B sends to A the packets with 

destination=D 

Packets can still loop

3

4

5
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Split Horizon with poison reverse

 A & B go through C to reach D: both tell C that 

their distance to D is infinite (poison reverse)
◼ C never attempts to reach D via A or B

 

41

A

B C

D

When node C fails, 

1. A tries to reach D via B: A tells B DD = ∞

2. B does the same thing

3. Both A and B realize that D is no longer 

reachable, prevent packet looping.

Routing Information Protocol (RIP): a distance 

vector protocol. From specification

https://datatracker.ietf.org/doc/html/rfc2453

“... Split horizon with poisoned reverse will 

prevent any routing loops that involve only two 
routers.  However, it is still possible to end up with 

patterns in which three routers are engaged in 

mutual deception...” 
CS118 - Winter 
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Another way to mitigate routing loops

Without using any split-horizon or poison-reverse stuff:  

path-vector routing

42

 A’s announcement: my path to 

D: A→C→D

 B’s announcement: my path to 

D: B→C→D

 When C fails: both A and B 

realize there is no path to D

path-vector is used by BGP 

(border gateway protocol) 

A

B C

D
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Comparison of LS and DV algorithms

 Performance measure: i) message overhead, ii) time 

to convergence

 Distance vector:
◼ Each node sends to neighbors its distances to all 

destinations 
⚫ Each update msg can be large in size (linear with the 

#destinations), but travels over one link only

◼ Each node only knows distances to other destinations

 Link state:
◼ One’s distance to all neighbors is broadcasted to the 

entire network
⚫ Each update msg is small in size, but travels through all the 

links in the network

◼ Each node learns the entire topology map
43CS118 - Winter 

2025



What happens if a router malfunctions?

 Link-state 
◼ A node can advertise incorrect link cost

◼ each node computes its own table

 Distance vector
◼ A node can advertise incorrect path cost

◼ one node’s distance-list is used by its neighbors for 

their own routing selection

44

A

E D

CB
7

8

1

2

1

2

Node-D: “I have 0 cost to all other nodes”

Link-State:

• updates from A & B: not connected to D

• Updates from C & E: cost not 0

Distance-Vector:

•  other nodes do not have info to verify
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