
Caveat: Lecture 9 P1

▪ Where are the subnets?

▪ What are the /24 subnet
addresses?

▪ How many interfaces I
can address in subnet
223.1.2.1/24?

223.1.1.1

223.1.1.3

223.1.1.4

223.1.2.2

223.1.2.6

223.1.3.2
223.1.3.1

223.1.3.27

223.1.1.2

223.1.7.0

223.1.7.1

223.1.8.0223.1.8.1

223.1.9.1

223.1.9.2

223.1.2.1

subnet 223.1.1/24

subnet 223.1.7/24

subnet 223.1.3/24subnet 223.1.2/24

subnet 223.1.9/24

subnet 223.1.8/24

1

00000000 ~ 11111111

256 - 2 = 253

CS118 - Winter

2025

Lecture 12: Where we are in the textbook

5.1 Introduction

5.2 Routing algorithms

 Link state

 Distance vector

5.3 Intra-AS routing in

the Internet: OSPF

5.4 Routing among the

ISPs: BGP

5.5 The SDN control

plane

5.6 ICMP: The Internet

Control Message

Protocol (covered

briefly in lecture 12)

5.7 Network

management and

SNMP

Will not cover 5.5-5.7

to
d

a
y

n
e

x
t le

c
tu

re

2CS118 - Winter

2025

Network-layer functions

 Forwarding: move packets from a router’s input to

appropriate output interface

 Routing: determine the path taken by packets to

reach destinations

3

data plane

routing plane, or control plane

Two ways to structuring network routing/control:

▪ per-router control (traditional)
• Routers run routing protocol to set up forwarding table

▪ (logically) centralized control (more recent)
▪ Software defined networking (SDN)

CS118 - Winter

2025

Routing
Algorithm

Using the info learned from other routers through routing

protocols, each router runs the routing algorithm to compute

forwarding table

forwarding/data
plane

routing/control
plane

Per-router control plane

4

routing protocol msg exchange

CS118 - Winter

2025

How to find the best path to a destination?

5

A

E
D

CB

F

1 1

1

2

2

3

Need computation algorithm

to find the best path from one

point to any other point

F

D

H

K

G

E

C

B J

I

A

2

2

2

2

3

55

5

1

1

1

3

3

5

If we abstract a network as a graph,

from each node (router) to a given destination

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5

CS118 - Winter

2025

Network Graph Abstraction

6

Graph: G: a set of nodes & edge

N = set of routers = { A, B, C, D, E, F }

E = set of links ={ (A,B), (A,C), (A,D), (B,C), (B,D), (C,D), (C,E), (C,F), (E,F) }

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5

Cost of link (a, b) = C(a, b)

– e.g. C(A, B) = 2, C(B, C) = 3

Cost of path (x1, x2, x3,…, xp) = C(x1,x2)+C(x2,x3)+ … + C(xp-1,xp)

Route computation algorithm: given a graph, find least-cost

path from a given node to all the other nodes in the graph

CS118 - Winter

2025

Network Routing: algorithms vs. protocols

Route computation algorithms:

link-state (Dijkstra): given a
complete topology graph
with all nodes and link
costs, each node performs
its own computation of
shortest paths to all
destinations

distance-vector (Bellman-
Ford): each node knows its
link cost to neighbors, and
computes its shortest paths
to all destinations based on
the shortest paths of its
neighbors

Routing protocols

 Define the format of routing

information exchanges

 Define the computation upon

receiving routing updates

 Network topology changes

over time → continuously

updates all routers with

latest changes

7

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5

CS118 - Winter

2025

Link-State algorithm

Assuming every node knows the

network topology graph with link

cost

 Each node computes least cost

paths from itself to all the other

nodes
◼ determine the next hop of the

best path to each destination

 Iterative operation: after k

iterations, a node knows the best

paths to k destinations

8

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5

CS118 - Winter

2025

Link-State algorithm: basic notations

 c(x,y): link cost from neighbor

node x to node y

 D(v): current value of path cost

from source to destination v
◼ Initializes to ∞ if nodes (i, j) are

not direct neighbors
⚫ e.g. A’s init. view: D(e) = D(f) = ∞

 p(v): the node right before v

along best path from source to v
◼ from A’s view, best path from A to C

is A-D-E-C, p(c)=E

9

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5

CS118 - Winter

2025

Link-State algorithm

10

consider the computation done at node A

N': set of nodes whose least-cost paths has been found

1 Initialization:

2 N' = {A}

3 for all nodes v
4 if v adjacent to A

5 then D(v) = c(A,v)

6 else D(v) = ∞

7

8 Loop
9 find w not in N' such that D(w) is minimum:

10 add w to N'

11 update D(v) for all v adjacent to w and not in N':

12 D(v) = min(D(v), D(w) + c(w,v)), p(v) = w

13 /* new cost to v is either the old cost, or the
14 shortest path cost to w plus the cost from w to v */

15 until all nodes in N'

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5

CS118 - Winter

2025

Link-State algorithm: example

11

Step

0
start N'

A

D(B),p(B)

2, A
D(C),p(C)

5, A

D(D),p(D)

1, A
D(E),p(E)



D(F),p(F)



A

ED

CB

F

2

2

1
3

1

1

2

5
3

5

CS118 - Winter

2025

Link-State algorithm: example

12

Step

0

1

start N'

A

AD

D(B),p(B)

2, A

2, A

D(C),p(C)

5, A

4, D

D(E),p(E)


D(F),p(F)



A

ED

CB

F

2

2

1
3

1

1

2

5
3

5

2, D

D(D),p(D)

1, A

CS118 - Winter

2025

Link-State algorithm: example

13

Step

0

1

2

start N'

A

AD

ADE

D(B),p(B)

2, A

2, A

D(C),p(C)

5, A

4, D

3, E

D(E),p(E)


D(F),p(F)



4, E

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5

2, D

D(D),p(D)

1, A

CS118 - Winter

2025

Link-State algorithm: example

14

Step

0

1

2

3

start N’

A

AD

ADE

ADEB

D(B),p(B)

2, A

2, A

D(C),p(C)

5, A

4, D

3, E

3, E

D(D),p(D)

1, A
D(E),p(E)



A

ED

CB

F

2

2

1
3

1

1

2

5
3

5

2, D

D(F),p(F)



4, E

CS118 - Winter

2025

Link-State algorithm: example

15

Step

0

1

2

3

4

start N’

A

AD

ADE

ADEB

ADEBC

D(B),p(B)

2, A

2, A

D(C),p(C)

5, A

4, D

3, E

3, E

D(D),p(D)

1, A
D(E),p(E)



D(F),p(F)



4, E

4, E

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5

2, D

CS118 - Winter

2025

Link-State algorithm: example

16

Step

0

1

2

3

4

5

start N’

A

AD

ADE

ADEB

ADEBC

ADEBCF

D(B),p(B)

2, A

2, A

D(C),p(C)

5, A

4, D

3, E

 3, E

D(D),p(D)

1, A
D(E),p(E)



D(F),p(F)



4, E

4, E

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5

2, D

CS118 - Winter

2025

Link-State algorithm: example

17

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5

B
D

E

C

F

(A, B)

(A, D)

(A, D)

(A, D)

(A, D)

Destination Next Hop

Resulting forwarding table at A:Resulting shortest-path tree for A:

Step

0

1

2

3

4

5

start N’

A

AD

ADE

ADEB

ADEBC

ADEBCF

D(B),p(B)

2, A

2, A

D(C),p(C)

5, A

4, D

3, E

 3, E

D(D),p(D)

1, A
D(E),p(E)



D(F),p(F)



4, E

4, E

2, D

CS118 - Winter

2025

Link-State algorithm: discussion

Algorithm complexity: for a graph with n nodes

 each iteration: need to check all nodes, w, not in N'

 n(n+1)/2 comparisons: O(n^2)
◼ more efficient implementations possible: O(nlogn)

Oscillations possible:

 e.g., link cost = amount of carried traffic

18

A

D

C

B

1 1+e

e0

e

1
1

0 0

A

D

C

B

2+e 0

00
1+e 1

A

D

C

B

0 2+e

1+e1
0 0

A

D

C

B

2+e 0

e0
1+e 1

initially
… recompute

routing

… recompute … recompute

CS118 - Winter

2025

Link-State algorithm: discussion

Algorithm complexity: for a graph with n nodes

 each iteration: need to check all nodes, w, not in N'

 n(n+1)/2 comparisons: O(n^2)
◼ more efficient implementations possible: O(nlogn)

Oscillations possible:

 e.g., link cost = amount of carried traffic

19

A

D

C

B

1 1+e

e0

e

1
1

0 0

A

D

C

B

2+e 0

00
1+e 1

A

D

C

B

0 2+e

1+e1
0 0

A

D

C

B

2+e 0

e0
1+e 1

initially
… recompute

routing

… recompute … recompute

CS118 - Winter

2025

Distance Vector Algorithm

Summery of Link-State algorithm:

 Each node knows the complete topology graph

with link costs

 Each node calculate the shortest path to all other

nodes

For Distance-Vector algorithm:

 Each node know only needs from each direct

neighbor its list of distances to all destinations

 Each node computes shortest path based on the

input from all its neighbors

20CS118 - Winter

2025

Distance Vector Algorithm

Bellman-Ford equation (dynamic programming)

let

 dx(y) := cost of least-cost path from x to y

then

 dx(y) = min {c(x,v) + dv(y) }

21

v

cost to neighbor v

min taken over all neighbors v of x

cost from neighbor v to destination y

CS118 - Winter

2025

Dx(y) = min {c(x,v) + Dv(y) }
◼ where min is taken over all neighbors v of x

Distance Vector Equation

22

DA(F) = min {c(A,B) + DB(F),

 c(A,D) + DD(F),

 c(A,C) + DC(F) }

 = min {2 + 5,

 1 + 3,
 5 + 3} = 4

Node leading to the shortest path is next
hop to be saved in the forwarding table

A

ED

B

F

2

2

1
3

1

1

2

5
3

5

(DB(F)=5, DD(F) = 3, DC(F) = 3) C

CS118 - Winter

2025

Distance Vector: what a node does

1. Node x initialization: link cost to neighbor v: c(x,v)

2. x maintains Dx = [Dx(y): y є N]
⚫ Dx(y) = estimate of least cost from x to y

3. x sends its distance vector, Dx, to all its neighbors

4. x receives Dv from each neighbor v, calculates
D’x(y) = min {c(x,v) + Dv(y)}
If D’x(y) < Dx(y):(going through v to reach y is a shorter path)

◼ next hop to y = v (x picks v as next hop to reach y)

◼ Dx(y) = D’x(y)

◼ Send out the updated Dx

23

x informs all its neighbors of its newly

changed distance vector

CS118 - Winter

2025

Distance Vector Protocol

Iterative, asynchronous:

 Each local iteration caused by:
◼ local link cost change
◼ DV update message from

neighbor

 Continues until no nodes
exchange info.

Distributed:

 Each node notifies neighbors
only when its DV changes
◼ neighbors then notify their

neighbors if necessary

Asynchronous: nodes need not
Exchange info/iterate in lock
step

24

wait for (change in local

link cost of msg from

neighbor)

recompute estimates

if DV to any dest has

changed, notify neighbors

Each node:

CS118 - Winter

2025

DV
Da(a)=0

Da(b) = 8

Da(c) = ∞

Da(d) = 1

Da(e) = ∞

Da(f) = ∞

Da(g) = ∞

Da(h) = ∞

Da(i) = ∞

Distance vector: example

g h i

1 1

1 1 1

1 1

1 1

8 1

t=0

▪ All nodes have
distance
estimates to
nearest
neighbors (only)

A few asymmetries:
▪ missing link

▪ larger cost

d e f

a b c

▪ All nodes send
their local
distance vector
to their
neighbors

25CS118 - Winter 2025

Distance vector example: iteration

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their
new local
distance vector

▪ send their new
local distance
vector to
neighbors

t=1

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

26CS118 - Winter 2025

Distance vector example: iteration

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their
new local
distance vector

▪ send their new
local distance
vector to
neighbors

t=1

compute compute compute

compute compute compute

compute compute compute

27CS118 - Winter 2025

Distance vector example: iteration

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their
new local
distance vector

▪ send their new
local distance
vector to
neighbors

t=1

28CS118 - Winter 2025

Distance vector example: iteration

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their
new local
distance vector

▪ send their new
local distance
vector to
neighbors

t=2

29CS118 - Winter 2025

Distance vector example: iteration

g h i

1 1

1 1 1

1 1

8 1

2 1

d e f

a b c

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their
new local
distance vector

▪ send their new
local distance
vector to
neighbors

t=2

compute compute compute

compute compute compute

compute compute compute

30CS118 - Winter 2025

Distance vector example: iteration

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their
new local
distance vector

▪ send their new
local distance
vector to
neighbors

t=2

31CS118 - Winter 2025

DV in a:
Da(a)=0

Da(b) = 8

Da(c) = ∞

Da(d) = 1

Da(e) = ∞

Da(f) = ∞

Da(g) = ∞

Da(h) = ∞

Da(i) = ∞

Distance vector example: computation

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ b receives DVs
from a, c, e

a b c

d e f

DV in c:

Dc(a) = ∞

Dc(b) = 1

Dc(c) = 0

Dc(d) = ∞

Dc(e) = ∞

Dc(f) = ∞

Dc(g) = ∞

Dc(h) = ∞

Dc(i) = ∞

DV in e:

De(a) = ∞

De(b) = 1

De(c) = ∞

De(d) = 1

De(e) = 0

De(f) = 1

De(g) = ∞

De(h) = 1

De(i) = ∞

CS118 - Winter 2025 32

Distance vector example: computation

DV in a:
Da(a)=0

Da(b) = 8

Da(c) = ∞

Da(d) = 1

Da(e) = ∞

Da(f) = ∞

Da(g) = ∞

Da(h) = ∞

Da(i) = ∞

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

DV in c:

Dc(a) = ∞

Dc(b) = 1

Dc(c) = 0

Dc(d) = ∞

Dc(e) = ∞

Dc(f) = ∞

Dc(g) = ∞

Dc(h) = ∞

Dc(i) = ∞

DV in e:

De(a) = ∞

De(b) = 1

De(c) = ∞

De(d) = 1

De(e) = 0

De(f) = 1

De(g) = ∞

De(h) = 1

De(i) = ∞

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1
▪ b receives DVs

from a, c, e,
computes:

a b c

d e f

DV in b:

Db(f) =2
Db(g) = ∞
Db(h) = 2
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = 2
Db(e) = 1

e

computeb

Db(a) = min{cb,a+Da(a), cb,c +Dc(a), cb,e+De(a)} = min{8,∞,∞} = 8

Db(c) = min{cb,a+Da(c), cb,c +Dc(c), c b,e +De(c)} = min{∞,1,∞} = 1

Db(d) = min{cb,a+Da(d), cb,c +Dc(d), c b,e +De(d)} = min{9,2,∞} = 2

Db(f) = min{cb,a+Da(f), cb,c +Dc(f), c b,e +De(f)} = min{∞,∞,2} = 2

Db(i) = min{cb,a+Da(i), cb,c +Dc(i), c b,e+De(i)} = min{∞, ∞, ∞} =

∞

Db(h) = min{cb,a+Da(h), cb,c +Dc(h), c b,e+De(h)} = min{∞, ∞, 2} =

2

Db(e) = min{cb,a+Da(e), cb,c +Dc(e), c b,e +De(e)} = min{∞,∞,1} = 1

Db(g) = min{cb,a+Da(g), cb,c +Dc(g), c b,e+De(g)} = min{∞, ∞, ∞} = ∞

CS118 - Winter 2025

DV in a:
Da(a)=0

Da(b) = 8

Da(c) = ∞

Da(d) = 1

Da(e) = ∞

Da(f) = ∞

Da(g) = ∞

Da(h) = ∞

Da(i) = ∞

Distance vector example: computation

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ c receives DVs
from b

a b c

d e f

DV in c:

Dc(a) = ∞

Dc(b) = 1

Dc(c) = 0

Dc(d) = ∞

Dc(e) = ∞

Dc(f) = ∞

Dc(g) = ∞

Dc(h) = ∞

Dc(i) = ∞

DV in e:

De(a) = ∞

De(b) = 1

De(c) = ∞

De(d) = 1

De(e) = 0

De(f) = 1

De(g) = ∞

De(h) = 1

De(i) = ∞

CS118 - Winter 2025 34

Distance vector example: computation

g h i

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ c receives DVs
from b
computes:

a b c

d e f

DV in c:

Dc(a) = ∞

Dc(b) = 1

Dc(c) = 0

Dc(d) = ∞

Dc(e) = ∞

Dc(f) = ∞

Dc(g) = ∞

Dc(h) = ∞

Dc(i) = ∞

Dc(a) = min{cc,b+Db(a}} = 1 + 8 = 9

Dc(b) = min{cc,b+Db(b)} = 1 + 0 = 1

Dc(d) = min{cc,b+Db(d)} = 1+ ∞ = ∞

Dc(e) = min{cc,b+Db(e)} = 1 + 1 = 2

Dc(f) = min{cc,b+Db(f)} = 1+ ∞ = ∞

Dc(g) = min{cc,b+Db(g)} = 1+ ∞ = ∞

Dc(i) = min{cc,b+Db(i)} = 1+ ∞ = ∞

Dc(h) = min{cbc,b+Db(h)} = 1+ ∞ = ∞

DV in c:

Dc(a) = 9

Dc(b) = 1

Dc(c) = 0

Dc(d) = 2

Dc(e) = ∞

Dc(f) = ∞

Dc(g) = ∞

Dc(h) = ∞

Dc(i) = ∞

compute

CS118 - Winter 2025 35

Distance vector example: computation

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ e receives DVs
from b, d, f, h

a b c

DV in f:

Dc(a) = ∞

Dc(b) = ∞

Dc(c) = ∞

Dc(d) = ∞

Dc(e) = 1

Dc(f) = 0

Dc(g) = ∞

Dc(h) = ∞

Dc(i) = 1

DV in e:

De(a) = ∞

De(b) = 1

De(c) = ∞

De(d) = 1

De(e) = 0

De(f) = 1

De(g) = ∞

De(h) = 1

De(i) = ∞

DV in h:

Dc(a) = ∞

Dc(b) = ∞

Dc(c) = ∞

Dc(d) = ∞

Dc(e) = 1

Dc(f) = ∞

Dc(g) = 1

Dc(h) = 0

Dc(i) = 1

DV in d:

Dc(a) = 1

Dc(b) = ∞

Dc(c) = ∞

Dc(d) = 0

Dc(e) = 1

Dc(f) = ∞

Dc(g) = 1

Dc(h) = ∞

Dc(i) = ∞

d e f

g h i

Q: what is new DV computed in
e at t=1?

compute

CS118 - Winter 2025 36

Count-To-Infinity Problem

 Assume we use hop count as metric
◼ A uses B to reach D with cost 3

◼ B uses C to reach D with cost 2

◼ C reaches D with cost 1

37

A/3 B/2 C/1 D

 Suppose link between C and D breaks

◼ Since B informs its neighbors its distance to D is

2, C switches to B, sets its cost to (2+1= 3)

B’s cost to reach D

C sends to B the

packets destined to D

CS118 - Winter

2025

Count-To-Infinity Problem (cont.)

 B’s path cost is now 4
◼ A has not realized what has happened yet

 Once heard B’s cost=4, A & C change their cost to 5

 B hears C’s cost=5, B changes its cost to D to 6
◼ Cycle repeats, the distance “counting to infinity”

◼ Meanwhile data packets from A to D loop between B

and C
38

A/3 B/4 C/3 D

A/5 B/4 C/5 D

CS118 - Winter

2025

Split Horizon

 Because B reaches D via C, B tells C nothing

about node D
◼ A tells B nothing about nodes C and D

39

A/3 B/2 C/1 D

A router should not advertise a route back to the

same interface from which it learned it

CS118 - Winter

2025

Split Horizon: not effective in many cases

 Suppose the link between C and D breaks

40

A

B C

D

1. A and B do not tell C they can reach D

• They do tell each other

• A→B: my distance to D is 2

• B→A: my distance to D is 2

2. When C fails

• A sends to B the packets with

destination=D

• B sends to A the packets with

destination=D

Packets can still loop

3

4

5

CS118 - Winter

2025

Split Horizon with poison reverse

 A & B go through C to reach D: both tell C that

their distance to D is infinite (poison reverse)
◼ C never attempts to reach D via A or B

41

A

B C

D

When node C fails,

1. A tries to reach D via B: A tells B DD = ∞

2. B does the same thing

3. Both A and B realize that D is no longer

reachable, prevent packet looping.

Routing Information Protocol (RIP): a distance

vector protocol. From specification

https://datatracker.ietf.org/doc/html/rfc2453

“... Split horizon with poisoned reverse will

prevent any routing loops that involve only two
routers. However, it is still possible to end up with

patterns in which three routers are engaged in

mutual deception...”
CS118 - Winter

2025

https://datatracker.ietf.org/doc/html/rfc2453

Another way to mitigate routing loops

Without using any split-horizon or poison-reverse stuff:

path-vector routing

42

 A’s announcement: my path to

D: A→C→D

 B’s announcement: my path to

D: B→C→D

 When C fails: both A and B

realize there is no path to D

path-vector is used by BGP

(border gateway protocol)

A

B C

D

CS118 - Winter

2025

Comparison of LS and DV algorithms

 Performance measure: i) message overhead, ii) time

to convergence

 Distance vector:
◼ Each node sends to neighbors its distances to all

destinations
⚫ Each update msg can be large in size (linear with the

#destinations), but travels over one link only

◼ Each node only knows distances to other destinations

 Link state:
◼ One’s distance to all neighbors is broadcasted to the

entire network
⚫ Each update msg is small in size, but travels through all the

links in the network

◼ Each node learns the entire topology map
43CS118 - Winter

2025

What happens if a router malfunctions?

 Link-state
◼ A node can advertise incorrect link cost

◼ each node computes its own table

 Distance vector
◼ A node can advertise incorrect path cost

◼ one node’s distance-list is used by its neighbors for

their own routing selection

44

A

E D

CB
7

8

1

2

1

2

Node-D: “I have 0 cost to all other nodes”

Link-State:

• updates from A & B: not connected to D

• Updates from C & E: cost not 0

Distance-Vector:

• other nodes do not have info to verify

CS118 - Winter

2025

	Slide 1: Caveat: Lecture 9 P1
	Slide 2: Lecture 12: Where we are in the textbook
	Slide 3: Network-layer functions
	Slide 4: Per-router control plane
	Slide 5: How to find the best path to a destination?
	Slide 6: Network Graph Abstraction
	Slide 7: Network Routing: algorithms vs. protocols
	Slide 8: Link-State algorithm
	Slide 9: Link-State algorithm: basic notations
	Slide 10: Link-State algorithm
	Slide 11: Link-State algorithm: example
	Slide 12: Link-State algorithm: example
	Slide 13: Link-State algorithm: example
	Slide 14: Link-State algorithm: example
	Slide 15: Link-State algorithm: example
	Slide 16: Link-State algorithm: example
	Slide 17: Link-State algorithm: example
	Slide 18: Link-State algorithm: discussion
	Slide 19: Link-State algorithm: discussion
	Slide 20: Distance Vector Algorithm
	Slide 21: Distance Vector Algorithm
	Slide 22: Distance Vector Equation
	Slide 23: Distance Vector: what a node does
	Slide 24: Distance Vector Protocol
	Slide 25: Distance vector: example
	Slide 26: Distance vector example: iteration
	Slide 27: Distance vector example: iteration
	Slide 28: Distance vector example: iteration
	Slide 29: Distance vector example: iteration
	Slide 30: Distance vector example: iteration
	Slide 31: Distance vector example: iteration
	Slide 32: Distance vector example: computation
	Slide 33: Distance vector example: computation
	Slide 34: Distance vector example: computation
	Slide 35: Distance vector example: computation
	Slide 36: Distance vector example: computation
	Slide 37: Count-To-Infinity Problem
	Slide 38: Count-To-Infinity Problem (cont.)
	Slide 39: Split Horizon
	Slide 40: Split Horizon: not effective in many cases
	Slide 41: Split Horizon with poison reverse
	Slide 42: Another way to mitigate routing loops
	Slide 43: Comparison of LS and DV algorithms
	Slide 44: What happens if a router malfunctions?

