
Lecture 11: Security

8.1 Network Security:
overview

8.2 basics of Cryptography

 Symmetric Key
Cryptography

 Public Key Encryption

8.3 Message Integrity and
Digital Signatures

 Cryptographic Hash
Functions

 Message Authentication
Code

 8Digital Signatures

CS118 - Winter 2025 1

?

What is network security

 Confidentiality: only intended receiver(s) can see message

contents
◼ Sender encrypts message

◼ Each receiver decrypts message

 Authentication: receiver can confirm the identity of the producer

of received message

 Data integrity: any changes to the message (in transit, or

afterwards) can be detected

 Availability: services/data available to users
◼ biggest threat to availability today: DDoS (distributed denial of service)

CS118 - Winter 2025 2

U
tiliz

e
 c

ry
p
to

g
ra

p
h
ic

 te
c
h
n
o
lo

g
ie

s

The basic network security model

Friends and enemies

 Alice and Bob (2 communicating entities) want to communicate

securely
◼ Web browser and server

◼ on-line banking client and server

 Trudy (intruder) may intercept, delete, add, or modify messages

CS118 - Winter 2025

secure

sender
secure

receiver

channel data, control

messages

data data

Alice Bob

Trudy

3

(in general) How to protect secret…?

 (relatively) easy to make, hard to remember guess
◼ Password

◼ Codebook

◼ Security questions…

CS118 - Winter 2025 4

(in general) How to protect secret…?

mathematically

 One example: factoring is slow, multiplication is easy

◼ 91 = 7 * 13

◼ A magic number pair: 5, 29

⚫ 67 (C in ASCII), multiplies itself, takes remainder of 91, repeat 5 times

⚫ 67 * 67 = 4489, remainder 30

⚫ 30 * 67 = 2010, remainder 8

⚫ 8 * 67 = 536, remainder 81

⚫ 81 * 67 = 5427, remainder 58

⚫ 58, multiplies itself, takes remainder of 91, repeat 29 times

⚫ …

⚫ 9 * 58 = 522, remainder 67

CS118 - Winter 2025 5

The language of cryptography

CS118 - Winter 2025 6

m plaintext message

KA(m) ciphertext, encrypted with key KA

m = KB(KA(m))

plaintext plaintextciphertextencryption

algorithm
decryption

algorithm

Bob’s
decryption

key
K

B
K

A

Alice’s
encryption

key

8-6

Symmetric key cryptography

Bob and Alice share the same (symmetric) key: Ks

Q: how do Bob and Alice agree on the key value in a secure

way?
◼ Especially if they do not meet in person ?

CS118 - Winter 2025 7

plaintextciphertext

KS

encryption

algorithm
decryption

algorithm

KS

plaintext

message, m
KS (m) m = KS(KS(m))

8-7

Public Key Cryptography

 Radically different approach [Diffie-Hellman76, RSA78]
◼ RSA: Rivest, Shamir, Adelson algorithm

 Sender and receiver do not share secret key

 Each of them produce a pair of keys
◼ public key: known to all

◼ private key: known only to oneself

CS118 - Winter 2025

Bob’s private
key

Bob’s public
key

K
B

+

K
B

-

plaintext

message, m

encryption

algorithm
decryption

algorithm

plaintext

message

m = K (K (m))
B

+

B

-

ciphertext

K (m)
B

+

8

Public key encryption algorithms

CS118 - Winter 2025 9

need 𝐾𝐵(•)
+
 and 𝐾𝐵(•)

− such that

given public key 𝐾𝐵
+
 , it should be impossible

to compute private key 𝐾𝐵
−

Requirements:

1

2

𝐾𝐵
−
(𝐾𝐵

+
(m)) = m

RSA: an important property

 Very useful property
◼ Confidentiality: using 𝐾𝐵

+ to encrypt a private message to Bob

◼ Nonrepudiation: if Bob uses 𝐾𝐵
−

to encrypt a message, everyone can

use 𝐾𝐵
+
 to prove that Bob produced it

 One problem: using public-key to encrypt long messages is

computationally expensive

CS118 - Winter 2025 10

K (K (m)) = m
BB

- +
K (K (m))

BB

+ -
=

use public key first,

followed by private

key

use private key first,

followed by public

key

result is the same

RSA: Creating public/private key pair

Sec

urity
: 8-

1. choose two large prime numbers p, q. (e.g., 1024 bits each)

2. compute n = pq, z = (p-1)(q-1)

3. choose e (with e < n) that has no common factors with z (e,

z are “relatively prime”).

4. choose d such that ed-1 is exactly divisible by z. (in other

words: ed mod z = 1).

5. public key is (n,e). private key is (n,d,p,q).

K B
+ K B

-

CS118 - Winter 2025

Private key can derive the public part, but not the other way

(in general) How to protect secret…?

mathematically

 One example: factoring is slow, multiplication is easy

◼ 91 = 7 * 13

◼ A magic number pair: 5, 29

⚫ 67 (C in ASCII), multiplies itself, takes remainder of 91, repeat 5 times

⚫ 67 * 67 = 4489, remainder 30

⚫ 30 * 67 = 2010, remainder 8

⚫ 8 * 67 = 536, remainder 81

⚫ 81 * 67 = 5427, remainder 58

⚫ 58, multiplies itself, takes remainder of 91, repeat 29 times

⚫ …

⚫ 9 * 58 = 522, remainder 67

CS118 - Winter 2025 12

Public key: (91, 5)

Private key: (91, 29, 7, 13)

ed mod (p-1)(q-1) = 1

29e mod (7-1)(13-1) = 1

91 = pq

5d mod (p-1)(q-1) = 1

Use Public Key Crypto to Obtain Session

Keys
 Assuming that Alice and Bob know each

other’s public keys:

 Alice picks a symmetric key KS , uses
Bob’s public key to encrypt KS , send to
Bob

 Bob uses his private key to decrypt Alice’s
msg, gets the symmetric key KS

 Once both Alice and Bob have KS , they
can start using symmetric key
cryptography to communicate

 Q: how can Bob know for sure the msg is
sent by Alice?

 Next: digital signature by public key
◼ Need to understand crypto hash first

CS118 - Winter 2025 13

KB(KS)
+

KA(KS)
+

Cryptographic hash function/message digest

 goal: map a (potentially long)

variable length message to a
fixed-length, easy-to-compute

digital “fingerprint”

 Desired properties of hash function

◼ Deterministic

◼ Given 𝐻(𝑚), it is infeasible to generate

a message that yields 𝐻(𝑚)

◼ It is infeasible to find 𝑚1, 𝑚2 with the

same hash value

◼ A small change from 𝑚 to 𝑚’ should

lead to big change in 𝐻(𝑚’),

uncorrelated with 𝐻(𝑚)

CS118 - Winter 2025 14

large
message m

H: Hash

Function H(m)

Digital Signature by Public key crypto

 The sender has a pair of keys: public, private
◼ Cryptosign(private key, data) → signature of data

◼ Cryptoverify(public key, data, signature) →validation

CS118 - Winter 2025 15

Message authentication code (MAC)

 A message authentication code consists of three

algorithms:
◼ A key generation algorithm selects a key from the key space

uniformly at random.

◼ given the key and the message: a symmetric signing

algorithm efficiently returns a tag (or the MAC).

◼ given the key and the tag, a verifying algorithm efficiently

verifies the authenticity of the message

 MAC vs hash: stronger protection

 MAC vs signature: authentication without identity

◼ the same secret key used for MAC generation and msg

verification

CS118 - Winter 2025 16

Transport Layer Security (TLS)

 Goals

◼ provides data confidentiality using

symmetric key cryptography

◼ provides data integrity using a

keyed message authentication

checksum (MAC)

 Can we encrypt data in byte

stream as we write data into

TCP?

◼ where to put the MAC?

◼ If put at the end of a TCP

connection: no message integrity

checking until all data processed.

CS118 - Winter 2025 17

TLS data records

 Break byte stream to series of

records
◼ Each record carries a MAC

◼ Receiver checks each record as it

arrives

 TLS consists of two primary

components
◼ A handshake protocol that

authenticates the communicating

parties, negotiates cryptographic

parameters, and establishes shared

keying material.

◼ A record protocol that uses the

parameters from the handshake

protocol to protect traffic
⚫ Divide app data into records, each

independently protected

CS118 - Winter 2025 18

data MAC

TLS Record Protocol

Sender:

 Read the messages for transmit

 Fragment messages into chunks

of data

 Encrypt the data

 Calculate the MAC

 Transmit the resulting data to the

peer

Receiver:

 Read received data from the peer

 Verify the MAC

 Decrypt the data

 Reassemble fragments back to

the message

 Deliver the message to upper

protocol layers

CS118 - Winter 2025 19

Reliable data delivery (by TCP)

TLS Handshake Protocol

 A client connecting to a TLS-enabled server presents a list of

supported cipher suites (ciphers and hash functions).

 The server notifies the client its picks of cipher and hash

function

 The server provides a digital certificate.
◼ The certificate contains the server name

◼ the trusted certificate authority (CA) that vouches for the authenticity of

the certificate

◼ the server's public key.

 The client confirms the validity of the

 server certificate before proceeding.

CS118 - Winter 2025 20

https://en.wikipedia.org/wiki/Cipher_suite
https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Public_key_certificate
https://en.wikipedia.org/wiki/Hostname
https://en.wikipedia.org/wiki/Certificate_authority

TLS Handshake Protocol







◼

◼

◼



 To generate the session keys used for the secure connection, the
client either:
◼ encrypts a random number with the server's public key and sends the result

to the server; both parties then use the random number to generate a unique
session key for subsequent encryption and decryption of data during the
session

◼ uses Diffie–Hellman key exchange to securely generate a random and
unique session key for encryption and decryption
⚫ additional property of forward secrecy: if the server's private key is disclosed in

future, it cannot be used to decrypt the current session, even if the session is
intercepted and recorded by a third party.

CS118 - Winter 2025 21

https://en.wikipedia.org/wiki/Cipher_suite
https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Public_key_certificate
https://en.wikipedia.org/wiki/Hostname
https://en.wikipedia.org/wiki/Certificate_authority
https://en.wikipedia.org/wiki/Random_number_generation
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange

Diffie–Hellman key exchange in picture

 Alice and Bob agree on an arbitrary

starting color

 Each selects a secret color that they

keep to themselves

 Each mixes the secret color together

with the mutually shared color

 Exchange the mixed colors.

 Each mixes together the received

mixed color with own private color,

obtaining an identical secret share

between the two

CS118 - Winter 2025 22

Mathematically speaking

 A and B agree to use a modulus p = 23 and base g = 5 (which
is a primitive root modulo 23).
◼ a number g is a primitive root modulo n if every number a

coprime to n is congruent to a power of g modulo n
⚫ A and B are coprime if both of them can only divided by 1
⚫ a and b are said to be congruent modulo n, if their difference a − b is an integer

multiple of n (that is, if there is an integer k such that a − b = kn)

 A chooses a secret integer a = 4, then sends B A = ga mod p
◼ A = 54 mod 23 = 4

 B chooses a secret integer b = 3, then sends A B = gb mod p
◼ B = 53 mod 23 = 10

 A computes s = Ba mod p
◼ s = 104 mod 23 = 18

 B computes s = Ab mod p
◼ s = 43 mod 23 = 18

 A and B now share a secret (the number 18)

CS118 - Winter 2025 23

Key math motivation:

Given gx = y mod p

From x to y is easy, y to x is very hard

https://en.wikipedia.org/wiki/Coprime
https://en.wikipedia.org/wiki/Modular_arithmetic

TLS over TCP

 3-way handshake to set up a

TCP connection

 Then TLS can start its own

handshake

 Then send application data

using TLS record protocol

CS118 - Winter 2025 24

Carried in one

segment

Carried in one

segment

One more question: how does a client verify

the server’s certificate?

CS118 - Winter 2025 25

Public Key Certification authorities

CS118 - Winter 2025 26

Certification Authority (CA): binds public key to particular entity, E.

 Entity E (person, website) registers its public key with CA
◼ E provides “proof of identity” to CA

◼ CA creates certificate binding E to its public key

◼ certificate containing E’s public key digitally signed by CA ⏤ CA says

“this is E’s public key”

Bob’s

identifying

information

K
B

+

certificate for Bob’s public
key, signed by CA

Bob’s
public

key K
B

+
digital

signature

CA’s
private

key K
CA

-

Obtaining a Public key certificate

CS118 - Winter 2025 27

When Alice wants Bob’s public key:

 Gets Bob’s certificate (from Bob or elsewhere)

 Apply CA’s public key to Bob’s certificate, to validate Bob’s

public key

Two more (and most important) questions

 Who are those trusted CAs? Who choose them?

 How do end hosts get the CAs’ public keys a prior and in a

secure way?

◼ Which CAs’ keys that one must have?

Certification Authorities

CS118 - Winter 2025 28

Bob’s

public

key K
B

+

digital
signature

(decrypt)

CA

public

key
K

CA
+

K
B

+

CS118 - Winter 2025 29

Certification authorities

 Commercial certificate providers

 Free CA:

 How do the certificates for all the CAs get into your phones/
computers today?
◼ Through browser/operating system

⚫ Or anti-virus packages/manual configurations

30

A CA’s certificate: self-
signed

CS118 - Winter 2025

Who Decides Whom You Trust ?

CS118 - Winter 2025 31

From MACOS

Keychain access:

More food for thought

 Ideally how would you want to manage your trust?

 Assume you trust commercial CAs: TLS secures the

communication channel between 2 computers; the data is out

of protection when out of the TLS connection – a problem?
◼ If so, how to solve this problem?

 Online banking: does your laptop really connect to your bank?

32

Is today’s

Internet more

secure than 10

years ago?

Why? or why

not? There is no end-to-end security in today’s network

applications in general.
CS118 - Winter 2025

More food for thought

 Now looking back, what HTTPS secures?
◼ Confidentiality

◼ Integrity

◼ Authenticity

 Why we still have HTTPS-enabled phishing websites?
◼ paypal.secure-login.com?

CS118 - Winter 2025 33

CS118 - Winter 2025 34

TLS Handshake Protocol

 Runs over the TLS Record

Protocol

 Three goals:

– Agree a cipher suite.

– Agree a master secret

(Diffie–Hellman)

– Establish trust between

Client & Server.

CS118 - Winter 2025 35

CS118 - Winter 2025 36

Server parameters

Application data

Server parameters

1. Encrypted Extensions

• Server Name

• Message Length

• ...and optionally many more

2. Cert request

CS118 - Winter 2025 37

	Slide 1: Lecture 11: Security
	Slide 2: What is network security
	Slide 3: The basic network security model
	Slide 4: (in general) How to protect secret…?
	Slide 5: (in general) How to protect secret…? mathematically
	Slide 6: The language of cryptography
	Slide 7: Symmetric key cryptography
	Slide 8: Public Key Cryptography
	Slide 9: Public key encryption algorithms
	Slide 10: RSA: an important property
	Slide 11: RSA: Creating public/private key pair
	Slide 12: (in general) How to protect secret…? mathematically
	Slide 13: Use Public Key Crypto to Obtain Session Keys
	Slide 14: Cryptographic hash function/message digest
	Slide 15: Digital Signature by Public key crypto
	Slide 16: Message authentication code (MAC)
	Slide 17: Transport Layer Security (TLS)
	Slide 18: TLS data records
	Slide 19: TLS Record Protocol
	Slide 20: TLS Handshake Protocol
	Slide 21: TLS Handshake Protocol
	Slide 22: Diffie–Hellman key exchange in picture
	Slide 23: Mathematically speaking
	Slide 24: TLS over TCP
	Slide 25: One more question: how does a client verify the server’s certificate?
	Slide 26: Public Key Certification authorities
	Slide 27: Obtaining a Public key certificate
	Slide 28: Certification Authorities
	Slide 29
	Slide 30: Certification authorities
	Slide 31: Who Decides Whom You Trust ?
	Slide 32: More food for thought
	Slide 33: More food for thought
	Slide 34
	Slide 35: TLS Handshake Protocol
	Slide 36
	Slide 37

